Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(8): 087307    DOI: 10.1088/1674-1056/24/8/087307
SPECIAL TOPIC—Silicene Prev   Next  

Comparison of electronic structure between monolayer silicenes on Ag (111)

Chun-Liang Lina, Ryuichi Arafuneb, Maki Kawaia, Noriaki Takagia
a Department of Advanced Materials Science, Graduate School of Frontier Science, The University of Tokyo, 5-1-5 Kashiwa, Chiba 277-8561, Japan;
b International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Ibaraki 304-0044, Japan
Abstract  The electronic structures of monolayer silicenes (4×4 and √13×√13R13.9o) grown on Ag (111) surface are studied by scanning tunneling spectroscopy (STS) and density functional theory (DFT) calculations. While both phases have similar electronic structures around the Fermi level, significant differences are observed in the higher energy unoccupied states. The DFT calculations show that the contributions of Si 3pz orbitals to the unoccupied states are different because of their different buckled configurations.
Keywords:  silicene      electronic structure      STM      DFT  
Received:  25 February 2015      Revised:  25 May 2015      Accepted manuscript online: 
PACS:  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  68.37.Ef (Scanning tunneling microscopy (including chemistry induced with STM))  
  61.46.-w (Structure of nanoscale materials)  
  81.05.Zx (New materials: theory, design, and fabrication)  
Fund: Project supported by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) through Grants-in-Aid for Scientific Research (Grant Nos. 24241040 and 25110008) and the World Premier International Research Center Initiative (WPI), MEXT, Japan.
Corresponding Authors:  Chun-Liang Lin, Noriaki Takagi     E-mail:  clin@ams.k.u-tokyo.ac.jp;n-takagi@k.u-tokyo.ac.jp

Cite this article: 

Chun-Liang Lin, Ryuichi Arafune, Maki Kawai, Noriaki Takagi Comparison of electronic structure between monolayer silicenes on Ag (111) 2015 Chin. Phys. B 24 087307

[1] Takeda K and Shiraishi K 1994 Phys. Rev. B 50 14916
[2] Cahangirov S, Topsakal M, Aktrük E, Sahin H and Ciraci S 2009 Phys. Rev. Lett. 102 236804
[3] Liu C C Feng W and Yao Y 2011 Phys. Rev. Lett. 107 076802
[4] Ezawa M 2012 J. Phys. Soc. Jpn. 81 064705
[5] Ezawa M 2012 Phys. Rev. Lett. 109 055502
[6] Drummond N D, Zólyomi V and Fal'ko V I 2012 Phys. Rev. B 85 075423
[7] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801
[8] De Padova P, Quaresima C, Ottaviani C, Sheverdyaeva P M, Moras P, Carbone C, Olivieri D T B, Kara A, Oughaddou H, Aufray B, and Le Lay G 2010 Appl. Phys. Lett. 96 261905
[9] Lalmi B, Oughaddou H, Enriquez H, Kara A, Vizzini S, Ealet B and Aufray B 2010 Appl. Phys. Lett. 97 223109
[10] Lin C L, Arafune R, Kawahara K, Tsukahara N, Minamitani E, Kim Y, Takagi N and Kawai M 2012 Appl. Phys. Express 5 045802
[11] Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B and Le Lay G 2012 Phys. Rev. Lett. 108 155501
[12] Meng L, Wang Y, Zhang L, Du S, Wu R, Li L, Zhang Y, Li G, Zhou H, Hofer W A and Gao H 2013 Nano Lett. 13 685
[13] Fleurence A, Friedlein R, Ozaki T, Kawai H, Wang Y and Yamada-Takamura Y 2012 Phys. Rev. Lett. 108 245501
[14] Chiappe D, Scalise E, Cinquanta E, Grazianetti C, van den Broek B, Fanciulli M, Houssa M and Molle A 2014 Adv. Mater. 26 2096
[15] Jamgotchian H, Colignon Y, Hamzaoui N, Ealet B, Hoarau J Y, Aufray B and Bibérian J P 2012 J. Phys.: Condens. Matter 24 172001
[16] Enriquez H, Vizzini S, Kara A, Lalmi B and Oughaddou H 2012 J. Phys.: Condens. Matter 24 314211
[17] Feng B, Ding Z, Meng S, Yao Y, He X, Cheng P, Chen L and Wu K 2012 Nano Lett. 12 3507
[18] Chen L, Liu C C, Feng B, He X, Cheng P, Ding Z, Meng S, Yao Y and Wu K 2012 Phys. Rev. Lett. 109 056804
[19] Arafune R, Lin C L, Kawahara K, Tsukahara N, Minamitani E, Kim Y, Takagi N and Kawai M 2013 Surf. Sci. 608 297
[20] Cinquanta E, Scalise E, Chiappe D, Grazianetti C, van den Broek B, Houssa M, Fanciulli M and Molle A 2013 J. Phys. Chem. C 117 16719
[21] Fukaya Y, Mochizuki I, Maekawa M, Wada K, Hyodo T, Matsuda I and Kawasuso A 2013 Phys. Rev. B 88 205413
[22] Chen L, Liu C C, Feng B, He X, Cheng P, Ding Z, Meng S, Yao Y and Wu K 2013 Phys. Rev. Lett. 110 229702
[23] De Padova P, Vogt P, Resta A, Avila J, Razado-Colambo I, Quaresima C, Ottaviani C, Olivieri B, Bruhn T, Hirahara T, Shirai T, Hasegawa S, Asensio M C and Le Lay G 2013 Appl. Phys. Lett. 102 163106
[24] De Padova P, Avila J, Resta A, Razado-Colambo I, Quaresima C, Ottaviani C, Olivieri B, Bruhn T, Vogt P, Asensio M C and Le Lay G 2013 J. Phys.: Condens. Matter 25 382202
[25] Lin C L, Arafune R, Kawahara K, Kanno M, Tsukahara N, Minamitani E, Kim Y, Kawai M and Takagi N 2013 Phys. Rev. Lett. 110 076801
[26] Arafune R, Lin C L, Nagao R, Kawai M and Takagi N 2013 Phys. Rev. Lett. 110 229701
[27] Wang Y P and Cheng H P 2013 Phys. Rev. B 87 245430
[28] Cahangirov S, Audiffred M, Tang P, Iacomino A, Duan W, Merino G and Rubio A 2013 Phys. Rev. B 88 035432
[29] Moras P, Mentes T O, Sheverdyaeva P M, Locatelli A and Carbone C 2014 J. Phys.: Condens. Matter 26 185001
[30] Kawahara K, Shirasawa T, Arafune R, Lin C L, Takahashi T, Kawai M and Takagi N 2014 Surf. Sci. 623 25
[31] Sone J, Yamagami T, Aoki Y, Nakatsuji K and Hirayama H 2014 New J. Phys. 16 095004
[32] Shirai T, Shirasawa T, Hirahara T, Fukui N, Takahashi T and Hasegawa S 2014 Phys. Rev. B 89 241403
[33] Pflugradt P, Matthes L and Bechstedt F 2014 Phys. Rev. B 89 035403
[34] Scalise E, Cinquanta E, Houssa M, van den Broek B, Chiappe D, Grazianetti C, Pourtois G, Ealet B, Molle A, Fanciulli M, Afanas'ev V V and Stesmans A 2014 Appl. Surf. Sci. 291 113
[35] Tchalala M R, Enriquez H, Yildirim H, Kara A, Mayne A J, Dujardin G, Ali M A and Oughaddou H 2014 Appl. Surf. Sci. 303 61
[36] Yuan Y, Quhe R, Zheng J, Wang Y, Ni Z, Shi J and Lu J 2014 Physica E 58 38
[37] Mahatha S K, Moras P, Bellini V, Sheverdyaeva P M, Struzzi C, Petaccia L and Carbone C 2014 Phys. Rev. B 89 201416
[38] Stephan R, Hanf M C and Sonnet P 2015 J. Phys.: Condens. Matter 27 015002
[39] Ishida H, Hamamoto Y, Morikawa Y, Minamitani E, Arafune R and Takagi N 2015 New J. Phys. 17 015013
[40] Tao L, Cinquanta E, Chiappe D, Grazianetti C, Fanciulli M, Dubey M, Molle A and Akinwande D 2015 Nat. Nanotechnol. 10 227
[41] Kresse G and Furthmüller J 1996 Phys. Rev. B 56 11169
[42] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[43] Blöchl P E 1994 Phys. Rev. B 24 17953
[44] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[45] Feng M, Zhao J and Petek H 2008 Science 320 359
[46] Yang M C, Lin C L, Su W B, Lin S P, Lu S M, Lin H Y, Chang C S, Hsu W K and Tsong T T 2009 Phys. Rev. Lett. 102 196102
[47] Lin C L, Yang M C, Su W B, Lin S P, Lu S M, Lin H Y, Chang C S, Fu T Y and Tsong T T 2010 Chin. J. Phys. 48 855
[48] Miller T, McMahon W E and Chiang T C 1996 Phys. Rev. Lett. 77 1167
[49] Pontius N, Sametoglu V and Petek H 2005 Phys. Rev. B 72 115105
[50] Winkelmann A, Sametoglu V, Zhao J, Kubo A and Petek H 2007 Phys. Rev. B 76 195428
[51] N'Diaye A T, Bleikamp S, Feibelman P J and Michely T 2006 Phys. Rev. Lett. 97 215501
[52] Sutter P, Sadowski J T and Sutter E 2009 Phys. Rev. B 80 245411
[53] Vázquez de Parga A L, Calleja F, Borca B, Passeggi M C G, Hinarejos J J, Guinea F and Miranda R 2008 Phys. Rev. Lett. 100 056807
[54] Gao L, Guest J R and Guisinger N P 2010 Nano Lett. 10 3512
[55] Joshi S, Ecija D, Koitz R, Iannuzzi M, Seitsonen A P, Hutter J, Sachdev H, Vijayaraghavan S, Bischoff F, Seufert K, Barth J V and Auwärter W 2012 Nano Lett. 12 5821
[56] Liu Z L, Wang M X, Xu J P, Ge J F, Le Lay G, Vogt P, Qian D, Gao C L, Liu C and Jia J F 2014 New J. Phys. 16 075006
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[3] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[4] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[5] Computational studies on magnetism and ferroelectricity
Ke Xu(徐可), Junsheng Feng(冯俊生), and Hongjun Xiang(向红军). Chin. Phys. B, 2022, 31(9): 097505.
[6] Selective formation of ultrathin PbSe on Ag(111)
Jing Wang(王静), Meysam Bagheri Tagani, Li Zhang(张力), Yu Xia(夏雨), Qilong Wu(吴奇龙), Bo Li(黎博), Qiwei Tian(田麒玮), Yuan Tian(田园), Long-Jing Yin(殷隆晶), Lijie Zhang(张利杰), and Zhihui Qin(秦志辉). Chin. Phys. B, 2022, 31(9): 096801.
[7] Monolayer MoS2 of high mobility grown on SiO2 substrate by two-step chemical vapor deposition
Jia-Jun Ma(马佳俊), Kang Wu(吴康), Zhen-Yu Wang(王振宇), Rui-Song Ma(马瑞松), Li-Hong Bao(鲍丽宏), Qing Dai(戴庆), Jin-Dong Ren(任金东), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 088105.
[8] Experimental observation of pseudogap in a modulation-doped Mott insulator: Sn/Si(111)-(√30×√30)R30°
Yan-Ling Xiong(熊艳翎), Jia-Qi Guan(关佳其), Rui-Feng Wang(汪瑞峰), Can-Li Song(宋灿立), Xu-Cun Ma(马旭村), and Qi-Kun Xue(薛其坤). Chin. Phys. B, 2022, 31(6): 067401.
[9] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[10] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[11] Measurement of electronic structure in van der Waals ferromagnet Fe5-xGeTe2
Kui Huang(黄逵), Zhenxian Li(李政贤), Deping Guo(郭的坪), Haifeng Yang(杨海峰), Yiwei Li(李一苇),Aiji Liang(梁爱基), Fan Wu(吴凡), Lixuan Xu(徐丽璇), Lexian Yang(杨乐仙), Wei Ji(季威),Yanfeng Guo(郭艳峰), Yulin Chen(陈宇林), and Zhongkai Liu(柳仲楷). Chin. Phys. B, 2022, 31(5): 057404.
[12] Temperature dependence of bismuth structures under high pressure
Xiaobing Fan(范小兵), Shikai Xiang(向士凯), and Lingcang Cai(蔡灵仓). Chin. Phys. B, 2022, 31(5): 056101.
[13] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[14] Theoretical study on the mechanism for the excited-state double proton transfer process of an asymmetric Schiff base ligand
Zhengran Wang(王正然), Qiao Zhou(周悄), Bifa Cao(曹必发), Bo Li(栗博), Lixia Zhu(朱丽霞), Xinglei Zhang(张星蕾), Hang Yin(尹航), and Ying Shi(石英). Chin. Phys. B, 2022, 31(4): 048202.
[15] A DFT/TD-DFT study of effect of different substituent on ESIPT fluorescence features of 2-(2'-hydroxyphenyl)-4-chloro- methylthiazole derivatives
Shen-Yang Su(苏申阳), Xiu-Ning Liang(梁秀宁), and Hua Fang(方华). Chin. Phys. B, 2022, 31(3): 038202.
No Suggested Reading articles found!