Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(7): 074201    DOI: 10.1088/1674-1056/24/7/074201
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Giant transmission Goos–Hänchen shift in surface plasmon polaritons excitation and its physical origin

Yang Yang (杨阳), Liu Ju (刘菊), Li Zhi-Yuan (李志远)
Laboratory of Optical Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  Excitation of surface plasmon polaritons (SPPs) propagating at the interface between a dielectric medium and a silver thin film by a focused Gaussian beam in a classical Kretschmann prism setup is studied theoretically. We find that the center of the transmitted Gaussian evanescent wave has a giant lateral shift relative to the incident Gaussian beam center for a wide range of incident angle and Gaussian beam wavelength to excite SPPs, which can be more than two orders of magnitude larger than the silver film thickness. The phenomenon is closely related with the conventional Goos–Hänchen effect for total internal reflection of light beam, and it is called the transmission Goos–Hänchen shift. We find that this lateral shift depends heavily on the excitation wavelength, incident angle, and the silver layer thickness. Finite-difference time-domain simulations show that this transmission Goos–Hänchen shift is induced by a unique dynamical process of excitation, transport, and leakage of SPPs.
Keywords:  Goos-Hä      nchen shift      surface plasmon resonance      thin film  
Received:  09 November 2014      Revised:  19 January 2015      Accepted manuscript online: 
PACS:  42.25.Bs (Wave propagation, transmission and absorption)  
  42.15.Eq (Optical system design)  
  42.25.Dd (Wave propagation in random media)  
  52.35.Hr (Electromagnetic waves (e.g., electron-cyclotron, Whistler, Bernstein, upper hybrid, lower hybrid))  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2013CB632704) and the National Natural Science Foundation of China (Grant No. 11374357).
Corresponding Authors:  Li Zhi-Yuan     E-mail:  lizy@aphy.iphy.ac.cn

Cite this article: 

Yang Yang (杨阳), Liu Ju (刘菊), Li Zhi-Yuan (李志远) Giant transmission Goos–Hänchen shift in surface plasmon polaritons excitation and its physical origin 2015 Chin. Phys. B 24 074201

[1] Raether H 1988 Surface-Plasmons on Smooth and Rough Surfaces and on Gratings (Berlin: Springer-Verlag)
[2] Barnes W L, Dereux A and Ebbesen T W 2003 Nature 424 824
[3] Stockman M I 2011 Opt. Express 19 22029
[4] Li J F and Li Z Y 2014 Chin. Phys. B 23 047305
[5] Bozhevolnyi I, Volkov V S, Devaux E, Laluet J Y and Ebbesen T W 2006 Nature 440 508
[6] Oulton R F, Sorger V J, Zentgraf T, Ma R M, Gladden C, Dai L, Bartal G and Zhang X 2009 Nature 461 629
[7] Li Z Y and Xia Y N 2010 Nano Lett. 10 243
[8] Ding K and Ning C Z 2012 Light: Sci. Appl. 1 e20
[9] Liu S Y, Huang L, Li J F, Wang C, Meng Z M, Shi Z and Li Z Y 2013 J. Phys. Chem. C 117 10636
[10] McLellan J M, Li Z Y, Siekkinen A and Xia Y N 2007 Nano Lett. 7 1013
[11] Fang J X, Du S Y, Lebedkin S, Li Z Y, Kruk R, Schramm F and Hahn H 2010 Nano Lett. 10 5006
[12] Zhang R, Zhang Y, Dong Z C, Jiang S, Zhang C, Chen L G, Zhang L, Liao Y, Aizpurua J, Luo Y, Yang J L and Hou J G 2013 Nature 498 82
[13] Wang B L, Wang R, Liu R J, Lu X H, Zhao J M and Li Z Y 2013 Sci. Rep. 3 2358
[14] Zhou F, Liu Y, Li Z Y and Xia Y N 2010 Opt. Express 18 13337
[15] Atwater H A and Polman A 2010 Nat. Mater. 9 205
[16] Zijlstra P, Chon J W M and Gu M 2009 Nature 459 410
[17] Zhong X L and Li Z Y 2012 J. Phys. Chem. C 116 21547
[18] Huang X H, Neretina S and El-Sayed M A 2009 Adv. Mater. 21 4880
[19] Chen J Y, Wang D L, Xi J F, Au L, Siekkinen A, Warsen A, Li Z Y, Zhang H, Xia Y N and Li X D 2007 Nano Lett. 7 1318
[20] Hu M, Chen J Y, Li Z Y, Au L, Hartland G V, Li X D, Marquez M and Xia Y N 2006 Chem. Soc. Rev. 35 1084
[21] Palik E D 1985 Handbook of Optical Constants of Solids (Orlando, FL: Academic)
[22] Goos F and Hänchen H 1947 Ann. Phys. 1 333
[23] Artmann K 1948 Ann. Phys. 2 87
[24] Qamar Z S and Zubairy M S 2010 Phys. Rev. A 81 023821
[25] Liu X B, Cao Z Q, Zhu P F, Shen Q S and Liu X M 2006 Phys. Rev. E 73 056617
[26] Wang L G, Ikram M and Zubairy M S 2008 Phys. Rev. A 77 023811
[27] Yin X, Hesselink L, Liu Z, Fang N and Zhang X 2004 Appl. Phys. Lett. 85 372
[28] Luo C Y, Guo J, Wang Q K, Xiang Y J and Wen S C 2013 Opt. Express 21 10430
[29] Bretenaker F, Floch A L and Dutriaux L 1992 Phys. Rev. Lett. 68 931
[30] Shadrivov I V, Zharov A A and Kivshar Y S 2003 Appl. Phys. Lett. 83 2713
[31] Shadrivov I V, Ziolkowski R W, Zharov A A and Kivshar Y S 2005 Opt. Express 13 481
[32] Felbacq D, Moreau A and Smaâli R 2003 Opt. Lett. 28 1633
[33] Lai H M and Chan S W 2002 Opt. Lett. 27 680
[34] Wang L G, Chen H and Zhu S Y 2005 Opt. Lett. 30 2936
[35] Chuang S L 1986 J. Opt. Soc. Am. A 3 593
[36] Li C F 2007 Phys. Rev. A 76 013811
[37] Götte J B, Shinohara S and Hentschel M 2013 J. Opt. 15 014009
[38] Labekea D V, Baidaa F I and Vigoureuxb J M 1998 Ultramicroscopy 71 351
[39] Li J F, Guo H L and Li Z Y 2013 Photonics Research 1 28
[1] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[2] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[3] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[4] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[5] Method of measuring one-dimensional photonic crystal period-structure-film thickness based on Bloch surface wave enhanced Goos-Hänchen shift
Yao-Pu Lang(郎垚璞), Qing-Gang Liu(刘庆纲), Qi Wang(王奇), Xing-Lin Zhou(周兴林), and Guang-Yi Jia(贾光一). Chin. Phys. B, 2023, 32(1): 017802.
[6] Migration of weakly bonded oxygen atoms in a-IGZO thin films and the positive shift of threshold voltage in TFTs
Chen Wang(王琛), Wenmo Lu(路文墨), Fengnan Li(李奉南), Qiaomei Luo(罗巧梅), and Fei Ma(马飞). Chin. Phys. B, 2022, 31(9): 096101.
[7] Goos-Hänchen and Imbert-Fedorov shifts in tilted Weyl semimetals
Shuo-Qing Liu(刘硕卿), Yi-Fei Song(宋益飞), Ting Wan(万婷), You-Gang Ke(柯友刚), and Zhao-Ming Luo(罗朝明). Chin. Phys. B, 2022, 31(7): 074101.
[8] Structure, phase evolution and properties of Ta films deposited using hybrid high-power pulsed and DC magnetron co-sputtering
Min Huang(黄敏), Yan-Song Liu(刘艳松), Zhi-Bing He(何智兵), and Yong Yi(易勇). Chin. Phys. B, 2022, 31(6): 066101.
[9] Numerical study of a highly sensitive surface plasmon resonance sensor based on circular-lattice holey fiber
Jian-Fei Liao(廖健飞), Dao-Ming Lu(卢道明), Li-Jun Chen(陈丽军), and Tian-Ye Huang(黄田野). Chin. Phys. B, 2022, 31(6): 060701.
[10] Tunable enhanced spatial shifts of reflective beam on the surface of a twisted bilayer of hBN
Yu-Bo Li(李宇博), Hao-Yuan Song(宋浩元), Yu-Qi Zhang(张玉琦), Xiang-Guang Wang(王相光),Shu-Fang Fu(付淑芳), and Xuan-Zhang Wang(王选章). Chin. Phys. B, 2022, 31(6): 064207.
[11] The 50 nm-thick yttrium iron garnet films with perpendicular magnetic anisotropy
Shuyao Chen(陈姝瑶), Yunfei Xie(谢云飞), Yucong Yang(杨玉聪), Dong Gao(高栋), Donghua Liu(刘冬华), Lin Qin(秦林), Wei Yan(严巍), Bi Tan(谭碧), Qiuli Chen(陈秋丽), Tao Gong(龚涛), En Li(李恩), Lei Bi(毕磊), Tao Liu(刘涛), and Longjiang Deng(邓龙江). Chin. Phys. B, 2022, 31(4): 048503.
[12] An n—n type heterojunction enabling highly efficientcarrier separation in inorganic solar cells
Gang Li(李刚), Yuqian Huang(黄玉茜), Rongfeng Tang(唐荣风), Bo Che(车波), Peng Xiao(肖鹏), Weitao Lian(连伟涛), Changfei Zhu(朱长飞), and Tao Chen(陈涛). Chin. Phys. B, 2022, 31(3): 038803.
[13] Multi-frequency focusing of microjets generated by polygonal prisms
Yu-Jing Yang(杨育静), De-Long Zhang(张德龙), and Ping-Rang Hua(华平壤). Chin. Phys. B, 2022, 31(3): 034201.
[14] Sensitivity improvement of aluminum-based far-ultraviolet nearly guided-wave surface plasmon resonance sensor
Tianqi Li(李天琦), Shujing Chen(陈淑静), and Chengyou Lin(林承友). Chin. Phys. B, 2022, 31(12): 124208.
[15] Anomalous strain effect in heteroepitaxial SrRuO3 films on (111) SrTiO3 substrates
Zhenzhen Wang(王珍珍), Weiheng Qi(戚炜恒), Jiachang Bi(毕佳畅), Xinyan Li(李欣岩), Yu Chen(陈雨), Fang Yang(杨芳), Yanwei Cao(曹彦伟), Lin Gu(谷林), Qinghua Zhang(张庆华), Huanhua Wang(王焕华), Jiandi Zhang(张坚地), Jiandong Guo(郭建东), and Xiaoran Liu(刘笑然). Chin. Phys. B, 2022, 31(12): 126801.
No Suggested Reading articles found!