Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(6): 068506    DOI: 10.1088/1674-1056/24/6/068506
Special Issue: TOPICAL REVIEW — III-nitride optoelectronic materials and devices
TOPICAL REVIEW—III-nitride optoelectronic materials and devices Prev   Next  

Progress and prospects of GaN-based LEDs using nanostructures

Zhao Li-Xia (赵丽霞), Yu Zhi-Guo (于治国), Sun Bo (孙波), Zhu Shi-Chao (朱石超), An Ping-Bo (安平博), Yang Chao (杨超), Liu Lei (刘磊), Wang Jun-Xi (王军喜), Li Jin-Min (李晋闽)
Semiconductor Lighting Research and Development Center, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Abstract  

Progress with GaN-based light emitting diodes (LEDs) that incorporate nanostructures is reviewed, especially the recent achievements in our research group. Nano-patterned sapphire substrates have been used to grow an AlN template layer for deep-ultraviolet (DUV) LEDs. One efficient surface nano-texturing technology, hemisphere-cones-hybrid nanostructures, was employed to enhance the extraction efficiency of InGaN flip-chip LEDs. Hexagonal nanopyramid GaN-based LEDs have been fabricated and show electrically driven color modification and phosphor-free white light emission because of the linearly increased quantum well width and indium incorporation from the shell to the core. Based on the nanostructures, we have also fabricated surface plasmon-enhanced nanoporous GaN-based green LEDs using AAO membrane as a mask. Benefitting from the strong lateral SP coupling as well as good electrical protection by a passivation layer, the EL intensity of an SP-enhanced nanoporous LED was significantly enhanced by 380%. Furthermore, nanostructures have been used for the growth of GaN LEDs on amorphous substrates, the fabrication of stretchable LEDs, and for increasing the 3-dB modulation bandwidth for visible light communication.

Keywords:  GaN-based light emitting diodes (LEDs)      nanostructure      nano-patterned sapphire substrate      surface plasmon  
Received:  15 April 2015      Revised:  04 May 2015      Accepted manuscript online: 
PACS:  85.60.Jb (Light-emitting devices)  
  62.23.St (Complex nanostructures, including patterned or assembled structures)  
  78.66.Fd (III-V semiconductors)  
  81.07.-b (Nanoscale materials and structures: fabrication and characterization)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 61334009), the National High Technology Research and Development Program of China (Grant Nos. 2015AA03A101 and 2014BAK02B08), China International Science and Technology Cooperation Program (Grant No. 2014DFG62280), the "Import Outstanding Technical Talent Plan" and "Youth Innovation Promotion Association Program" of the Chinese Academy of Sciences.

Corresponding Authors:  Zhao Li-Xia     E-mail:  lxzhao@semi.ac.cn
About author:  85.60.Jb; 62.23.St; 78.66.Fd; 81.07.-b

Cite this article: 

Zhao Li-Xia (赵丽霞), Yu Zhi-Guo (于治国), Sun Bo (孙波), Zhu Shi-Chao (朱石超), An Ping-Bo (安平博), Yang Chao (杨超), Liu Lei (刘磊), Wang Jun-Xi (王军喜), Li Jin-Min (李晋闽) Progress and prospects of GaN-based LEDs using nanostructures 2015 Chin. Phys. B 24 068506

[1] Maruska H P and Tietjen J J 1969 Appl. Phys. Lett. 15 327
[2] Amano H, Sawaki N, Akasaki I and Toyoda Y 1986 Appl. Phys. Lett. 48 353
[3] Nakamura S, Mukai T, Senoh M and Iwasa N 1992 Jpn. J. Appl. Phys. 31 L139
[4] Nakamura S, Mukai T and Senoh M 1994 Appl. Phys. Lett. 64 1687
[5] Nakamura S, Senoh M, Iwasa N and Nagahama S 1995 Jpn. J. Appl. Phys. 34 L797
[6] Akasaki I and Amano H 1997 Jpn. J. Appl. Phys. 36 5393
[7] http://www.cree.com/News-and-Events/Cree-News/Press-Releases/2014/March/300LPW-LED-barrier
[8] http://www.nobelprize.org/nobel_prizes/physics/laureates/2014
[9] Usui A, Sunakawa H, Sakai A and Yamaguchi A 1997 Jpn. J. Appl. Phys. 36 L899
[10] Nam O, Bremser M, Ward B, Nemanich R and Davis R 1997 Jpn. J. Appl. Phys. 36 L532
[11] Zheleva T, Nam O, Bremser M and Davis R 1997 Appl. Phys. Lett. 71 2472
[12] Ashby C, Mitchell C, Han J, Missert N, Provencio P, Follstaedt D, Peake G and Griego L 2000 Appl. Phys. Lett. 77 3233
[13] Gao H Y, Yan F W, Zhang Y, Li J M, Zeng Y P and Wang G H 2008 J. Appl. Phys. 103 014314
[14] Chiu C H, Yen H H, Chao C L, Li Z Y, Yu P C, Kuo H C, Lu T C, Wang S C, Lau K M and Cheng S J 2008 Appl. Phys. Lett. 93 081108
[15] Dong P, Yan J C, Wang J X, Zhang Y, Geng C, Wei T B, Cong P, Zhang Y, Zeng J P, Tian Y, Sun L L, Yan Q, Li J M, Fan S and Qin Z X 2013 Appl. Phys. Lett. 102 241113
[16] Dong P, Yan J C, Zhang Y, Wang J X, Zeng J P, Geng C, Cong P, Sun L L, Wei T B, Zhao L X, Yan Q, He C G, Qin Z X and Li J M 2014 J. Crystal Growth 395 9
[17] Sun B, Zhao L X, Wei T B, Yi X Y, Liu Z Q, Wang G H and Li J M 2013 J. Appl. Phys. 113 243104
[18] Fujii T, Gao Y, Sharma R, Hu E L, DenBaars S P and Nakamura S 2004 Appl. Phys. Lett. 84 855
[19] Huang H W, Chu J T, Kao C C, Hseuh T H, Lu T C, Kuo H C, Wang S C and Yu C C 2005 Nanotechnology 16 1844
[20] Ee Y K, Arif R A, Tansu N, Kumnorkaew P and Gilchrist J F 2007 Appl. Phys. Lett. 91 221107
[21] Seo T H, Oh T S, Lee Y S, Jeong H, Kim J D, Kim H, Park A H, Lee K J, Hong C H and Suh E K 2010 Jpn. J. Appl. Phys. 49 092101
[22] Chang S J, Shen C F, Chen W S, Kuo C T, Ko T K, Shei S C and Sheu J K 2012 Appl. Phys. Lett. 100 061120
[24] Fan S H, Villeneuve P R, Joannopoulos J D and Schubert E F 1997 Phys. Rev. Lett. 78 3294
[25] Fujita M, Takahashi S, Tanaka Y, Asano T and Noda S 2005 Science 308 1296
[26] Fu W Y, Wong K K Y and Choi H W 2009 Appl. Phys. Lett. 95 133125
[27] Wierer J J, David A and Megens M M 2009 Nat. Photon. 3 163
[28] Oder T N, Shakya J, Lin J Y and Jiang H X 2003 Appl. Phys. Lett. 83 1231
[29] Oder T N, Kim K H, Lin J Y and Jiang H X 2004 Appl. Phys. Lett. 84 466
[30] Shakya J, Kim K H, Lin J Y and Jiang H X 2004 Appl. Phys. Lett. 85 142
[31] Wierer J J, Krames M R, Epler J E, Gardner N F, Craford M G, Wendt J R, Simmons J A and Sigalas M M 2004 Appl. Phys. Lett. 84 3885
[32] McGroddy K, David A, Matioli E, Iza M, Nakamura S, DenBaars S, Speck J S, Weisbuch C and Hu E L 2008 Appl. Phys. Lett. 93 103502
[33] David A, Fujii T, Moran B, Nakamura S, DenBaars S P, Weisbuch C and Benisty H 2006 Appl. Phys. Lett. 88 133514
[34] David A, Fujii T, Sharma R, McGroddy K, Nakamura S, DenBaars S P, Hu E L, Weisbuch C and Benisty H 2006 Appl. Phys. Lett. 88 061124
[35] Ellmer K 2012 Nat. Photon. 6 809
[36] Qi S L, Chen Z Z, Fang H, Sun Y J, Sang L W, Yang X L, Zhao L B, Tian P F, Deng J J, Tao Y B, Yu T J, Qin Z X and Zhang G Y 2009 Appl. Phys. Lett. 95 071114
[37] Kim H, Choi K K, Kim K K, Cho J, Lee S N, Park Y, Kwak J S and Seong T Y 2008 Opt. Lett. 33 1273
[38] Lee W C, Wang S J, Uang K M, Chen T M, Kuo D M, Wang P R and Wang P H 2011 Electrochem. Solid State Lett. 14 H53
[39] Sun B, Zhao L X, Wei T B, Yi X Y, Liu Z Q, Wang G H, Li J M and Yi F T 2012 Opt. Express 20 18537
[40] Kim S H, Lee K D, Kim J Y, Kwon M K and Park S J 2010 J. Electrochem. Soc. 157 H1067
[42] Cho H K, Jang J, Choi J H, Choi J, Kim J, Lee J S, Lee B, Choe Y H, Lee K D, Kim S H, Lee K, Kim S K and Lee Y H 2006 Opt. Express 14 8654
[43] Byeon K J, Hwang S Y and Lee H 2007 Appl. Phys. Lett. 91 091106
[44] Kim J Y, Kwon M K, Kim K S, Park S J, Kim S H and Lee K D 2007 Appl. Phys. Lett. 91 181109
[45] Truong T A, Campos L M, Matioli E, Meinel I, Hawker C J, Weisbuch C and Petroff P M 2009 Appl. Phys. Lett. 94 023101
[46] Kim J Y, Kwon M K, Park S J, Kim S H and Lee K D 2010 Appl. Phys. Lett. 96 251103
[47] Cho J Y, Byeon K J, Park H, Kim J, Kim H S and Lee H 2011 Nano. Res. Lett. 6 578
[48] Liang G Q, Mao W D, Pu Y Y, Zou H, Wang H Z and Zeng Z H 2006 Appl. Phys. Lett. 89 041902
[49] Kim D H, Cho C O, Roh Y G, Jeon H, Park Y S, Cho J, Im J S, Sone C, Park Y, Choi W J and Park Q H 2005 Appl. Phys. Lett. 87 203508
[50] Hulteen J C and Duyne R P V 1995 J. Vac. Sci. Technol. A 13 1553
[51] Wu W, Katsnelson A, Memis O G and Mohseni H 2007 Nanotechology 18 485302
[52] Li K H and Choi H W 2011 J. Appl. Phys. 110 053104
[53] Li K H, Ma Z and Choi H W 2012 Appl. Phys. Lett. 100 141101
[54] Li K H, Zang K Y, Chua S J and Choi H W 2013 Appl. Phys. Lett. 102 181117
[55] Wei T B, Wu K, Lan D, Yan Q F, Chen Y, Du C X, Wang J X, Zeng Y P and Li J M 2012 Appl. Phys. Lett. 101 211111
[56] Zhang Y Y, Li J, Wei T B, Liu J, Yi X Y, Wang G H and Yi F T 2012 Jpn. J. Appl. Phys. 51 020204
[57] Du C X, Geng C, Zheng H Y, Wei T B, Chen Y, Zhang Y Y, Wu K, Yan Q F, Wang J X and Li J M 2013 Jpn. J. Appl. Phys. 52 040207
[58] Wu K, Zhang Y Y, Wei T B, Lan D, Sun B, Zheng H Y, Lu H X, Chen Y, Wang J X, Luo Y and Li J M 2013 AIP Adv. 3 092124
[59] Zhang Y H, Wei T B, Xiong Z, Shang L, Tian Y D, Zhao Y, Zhou P Y, Wang J X and Li J M 2014 Appl. Phys. Lett. 105 013108
[60] Matioli E, Brinkley S, Kelchner K M, Hu Y L, Nakamura S, DenBaars S, Speck J and Weisbuch C 2012 Light: Sci. Appl. 1 e22
[61] Geng C, Wei T B, Wang X Q, Shen D Z, Hao Z B and Yan Q F 2014 Small 10 1668
[62] Han W, Fan S, Li Q and Hu Y 1997 Science 277 1287
[63] Cheng G S, Zhang L D, Zhu Y, Fei G T and Li G H 1999 Appl. Phys. Lett. 75 2455
[64] Zhao L X, Meng G W, Peng X S, Zhang X Y and Zhang L D 2002 J. Crystal Growth 235 124
[65] Kim H M, Cho Y H, Lee H, Kim S, Ryu S R, Kim D Y, Kang T W and Chung K S 2004 Nano Lett. 4 1059
[66] Lin H W, Lu Y J, Chen H Y, Lee H M and Gwo S 2010 Appl. Phys. Lett. 97 073101
[67] Bengoechea-Encabo A, Albert S, Lopez-Romero D, Lefebvre P, Barbagini F, Torres-Pardo A, Gonzalez-Calbet J M, Sanchez-Garcia M A and Calleja E 2014 Nanotechnology 25 435203
[68] Wang C Y, Chen L Y, Chen C P, Cheng Y W, Ke M Y, Hsieh M Y, Wu H M, Peng L H and Huang J J 2008 Opt. Express 16 10549
[69] Nguyen H P T, Zhang S, Cui K, Han X, Fathololoumi S, Couillard M, Botton G A and Mi Z 2011 Nano Lett. 11 1919
[70] Kuykendall T, Ulrich P, Aloni S and Yang P D 2007 Nat. Mater. 6 951
[71] Armitage R and Tsubaki K 2010 Nanotechnology 21 195202
[72] Hong Y J, Lee C H, Yoon A, Kim M, Seong H K, Chung H J, Sone C, Park Y J and Yi G C 2011 Adv. Mater. 23 3284
[73] Guo W, Zhang M, Bhattacharya P and Heo J 2011 Nano Lett. 11 1434
[74] Nguyen H P T, Cui K, Zhang S F, Djavid M, Korinek A, Botton G A and Mi Z 2012 Nano Lett. 12 1317
[75] Chiu C H, Lu T C, Huang H W, Lai C F, Kao C C, Chu J T, Yu C C, Kuo H C, Wang S C, Lin C F and Hsueh T H 2007 Nanotechnology 18 445201
[76] Kuykendall T, Pauzauskie P, Lee S, Zhang Y F, Goldberger J and Yang P D 2003 Nano Lett. 3 1063
[77] Deb P, Kim H, Rawat V, Oliver M, Kim S, Marshall M, Stach E and Sands T 2005 Nano Lett. 5 1847
[78] Hersee S D, Sun X Y and Wang X 2006 Nano Lett. 6 1808
[79] Qian F, Gradecak S, Li Y, Wen C Y and Lieber C M 2005 Nano Lett. 5 2287
[80] Qian F, Li Y, Gradecak S, Park H G, Dong Y J, Ding Y, Wang Z L and Lieber C M 2008 Nat. Mater. 7 701
[81] Wu K, Wei T B, Lan D, Wei X C, Zheng H Y, Chen Y, Lu H X, Huang K, Wang J X, Luo Y and Li J M 2013 Appl. Phys. Lett. 103 241107
[82] Wu K, Wei T B, Zheng H Y, Lan D, Wei X C, Hu Q, Lu H X, Wang J X, Luo Y and Li J M 2014 J. Appl. Phys. 115 123101
[83] Li S F and Waag A 2012 J. Appl. Phys. 111 071101
[84] Okamoto K, Niki I, Shvartser A, Narukawa Y, Mukai T and Scherer A 2004 Nat. Mater. 3 601
[85] Yeh D M, Huang C F, Chen C Y, Lu Y C and Yang C C 2007 Appl. Phys. Lett. 91 171103
[86] Shen K C, Chen C Y, Chen H L, Huang C F, Kiang Y W, Yang C C and Yang Y J 2008 Appl. Phys. Lett. 93 231111
[87] Yeh D M, Huang C F, Chen C Y, Lu Y C and Yang C C 2008 Nanotechnology 19 345201
[88] Kwon M K, Kim J Y, Kim B H, Park I K, Cho C Y, Byeon C C and Park S J 2008 Adv. Mater. 20 1253
[89] Cho C Y, Kwon M K, Lee S J, Han S H, Kang J W, Kang S E, Lee D Y and Park S J 2010 Nanotechnology 21 205201
[90] Cho C Y, Kim K S, Lee S J, Kwon M K, Ko H, Kim S T, Jung G Y and Park S J 2011 Appl. Phys. Lett. 99 041107
[91] Cho C Y, Lee S J, Song J H, Hong S H, Lee S M, Cho Y H and Park S J 2011 Appl. Phys. Lett. 98 051106
[92] Hong S H, Cho C Y, Lee S J, Yim S Y, Lim W, Kim S T and Park S J 2013 Opt. Express 21 3138
[93] Lu C H, Lan C C, Lai Y L, Li Y L and Liu C P 2011 Adv. Funct. Mater. 21 4719
[94] Chen H S, Chen C F, Kuo Y, Chou W H, Shen C H, Jung Y L, Kiang Y W and Yang C C 2013 Appl. Phys. Lett. 102 041108
[95] Zhang H, Zhu J, Zhu Z D, Jin Y H, Li Q Q and Jin G F 2013 Opt. Express 21 13492
[96] Yu Z G, Zhao L X, Wei X C, Sun X J, An P B, Zhu S C, Liu L, Tian L X, Zhang F, Lu H X, Wang J X, Zeng Y P and Li J M 2014 Opt. Express 22 A1596
[97] Gontijo I, Boroditsky M, Yablonovitch E, Keller S, Mishra U K and DenBaars S P 1999 Phys. Rev. B 60 11564
[98] Okamoto K, Niki I, Scherer A, Narukawa Y, Mukai T and Kawakami Y 2005 Appl. Phys. Lett. 87 071102
[99] Akselrod G M, Argyropoulos C, Hoang T B, Ciraci C, Fang C, Huang J, Smith D R and Mikkelsen M H 2014 Nat. Photon. 8 835
[100] Nami M and Feezell D F 2014 Opt. Express 22 29445
[101] Chung K, Lee C H and Yi G C 2010 Science 330 655
[102] Kobayashi Y, Kumakura K, Akasaka T and Makimoto T 2012 Nature 484 223
[103] Yang G, Jung Y, Cuervo C V, Ren F, Pearton S J and Kim J 2014 Opt. Express 22 A812
[104] Jung Y H, Wang X T, Kim J W, Kim S H, Ren F, Pearton S J and Kim J Y 2012 Appl. Phys. Lett. 100 231113
[105] Choi J H, Cho E H, Lee Y S, Shim M B, Ahn H Y, Baik C W, Lee E H, Kim K, Kim T H, Kim S, Cho K S, Yoon J, Kim M and Hwang S 2014 Adv. Opt. Mater. 2 267
[106] Kim T, Kim R H and Rogers J A 2012 IEEE Photon. J. 4 607
[107] Hong Y J, Kim Y J, Jeon J M, Kim M, Choi J H, Baik C W, Kim S I, Park S S, Kim J M and Yi G C 2011 Nanotechnology 22 205602
[108] Choi J H, Zoukarneev A, Kim S I, Baik C W, Yang M H, Park S S, Suh H, Kim U J, Son H B, Lee J S, Kim M, Kim J M and Kim K 2011 Nat. Photon. 5 763
[109] Nakamura E, Ueno K, Ohta J, Fujioka H and Oshima M 2014 Appl. Phys. Lett. 104 051121
[110] Shon J W, Ohta J, Ueno K, Kobayashi A and Fujioka H 2014 Sci. Rep. 4 5325
[1] Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
Soheil Oveissi, Aazam Ghassemi, Mehdi Salehi, S.Ali Eftekhari, and Saeed Ziaei-Rad. Chin. Phys. B, 2023, 32(4): 046201.
[2] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[3] Coexisting lattice contractions and expansions with decreasing thicknesses of Cu (100) nano-films
Simin An(安思敏), Xingyu Gao(高兴誉), Xian Zhang(张弦), Xin Chen(陈欣), Jiawei Xian(咸家伟), Yu Liu(刘瑜), Bo Sun(孙博), Haifeng Liu(刘海风), and Haifeng Song(宋海峰). Chin. Phys. B, 2023, 32(3): 036804.
[4] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[5] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[6] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[7] Evolution of microstructure, stress and dislocation of AlN thick film on nanopatterned sapphire substrates by hydride vapor phase epitaxy
Chuang Wang(王闯), Xiao-Dong Gao(高晓冬), Di-Di Li(李迪迪), Jing-Jing Chen(陈晶晶), Jia-Fan Chen(陈家凡), Xiao-Ming Dong(董晓鸣), Xiaodan Wang(王晓丹), Jun Huang(黄俊), Xiong-Hui Zeng(曾雄辉), and Ke Xu(徐科). Chin. Phys. B, 2023, 32(2): 026802.
[8] Chiral lateral optical force near plasmonic ring induced by Laguerre-Gaussian beam
Ying-Dong Nie(聂英东), Zhi-Guang Sun(孙智广), and Yu-Rui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(1): 018702.
[9] Effect of surface plasmon coupling with radiating dipole on the polarization characteristics of AlGaN-based light-emitting diodes
Yi Li(李毅), Mei Ge(葛梅), Meiyu Wang(王美玉), Youhua Zhu(朱友华), and Xinglong Guo(郭兴龙). Chin. Phys. B, 2022, 31(7): 077801.
[10] Numerical study of a highly sensitive surface plasmon resonance sensor based on circular-lattice holey fiber
Jian-Fei Liao(廖健飞), Dao-Ming Lu(卢道明), Li-Jun Chen(陈丽军), and Tian-Ye Huang(黄田野). Chin. Phys. B, 2022, 31(6): 060701.
[11] Effect of different catalysts and growth temperature on the photoluminescence properties of zinc silicate nanostructures grown via vapor-liquid-solid method
Ghfoor Muhammad, Imran Murtaza, Rehan Abid, and Naeem Ahmad. Chin. Phys. B, 2022, 31(5): 057801.
[12] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
[13] Morphological and structural damage investigation of nanostructured molybdenum fuzzy surface after pulsed plasma bombardment
Yu-Chuan Luo(罗玉川), Rong Yan(鄢容), Guo Pu(蒲国), Hong-Bin Wang(王宏彬), Zhi-Jun Wang(王志君), Chi Yang(杨驰), Li Yang(杨黎), Heng-Xin Guo(郭恒鑫), Zhi-Bing Zhou(周志兵), Bo Chen(陈波), Jian-Jun Chen(陈建军), Fu-Jun Gou(芶富均), Zong-Biao Ye(叶宗标), and Kun Zhang(张坤). Chin. Phys. B, 2022, 31(4): 045203.
[14] Independently tunable dual resonant dip refractive index sensor based on metal—insulator—metal waveguide with Q-shaped resonant cavity
Haowen Chen(陈颢文), Yunping Qi(祁云平), Jinghui Ding(丁京徽), Yujiao Yuan(苑玉娇), Zhenting Tian(田振廷), and Xiangxian Wang(王向贤). Chin. Phys. B, 2022, 31(3): 034211.
[15] Lithium ion batteries cathode material: V2O5
Baohe Yuan(袁保合), Xiang Yuan(袁祥), Binger Zhang(张冰儿), Zheng An(安政), Shijun Luo(罗世钧), and Lulu Chen(陈露露). Chin. Phys. B, 2022, 31(3): 038203.
No Suggested Reading articles found!