Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(6): 067202    DOI: 10.1088/1674-1056/24/6/067202
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Influences of spark plasma sintering temperature on the microstructures and thermoelectric properties of (Sr0.95Gd0.05)TiO3 ceramics

Li Liang-Liang (李亮亮)a b, Qin Xiao-Ying (秦晓英)c, Liu Yong-Fei (刘永飞)c, Liu Quan-Zhen (刘全桢)a b
a SINOPEC Research Institute of Safety Engineering, Qingdao 266071, China;
b State Key Laboratory of Chemical Safety, Qingdao 266071, China;
c Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China
Abstract  

(Sr0.95Gd0.05)TiO3 (SGTO) ceramics are successfully prepared via spark plasma sintering (SPS) respectively at 1548, 1648, and 1748 K by using submicron-sized SGTO powders synthesized from a sol–gel method. The densities, microstructures, and thermoelectric properties of the SGTO ceramics are studied. Though the Seebeck coefficient shows no obvious difference in the case that SPS temperatures range from 1548 K to 1648 K, the electrical conductivity and the thermal conductivity increase remarkably due to the increase in grain size and density. The sample has a density higher than 98% theoretical density as the sintering temperature increases up to 1648 K and shows average grain sizes increasing from ~ 0.7 μm to 7 μm until 1748 K. As a result, the maximum of the dimensionless figure of merit of ~ 0.24 is achieved at ~ 1000 K for the samples sintered at 1648 K and 1748 K, which was ~ 71% larger than that (0.14 at ~ 1000 K) for the sample sintered at 1548 K due to the enhancement of the power factor.

Keywords:  sintering      transitional metal oxides      ceramics      thermoelectric properties  
Received:  05 January 2015      Revised:  21 January 2015      Accepted manuscript online: 
PACS:  72.20.Pa (Thermoelectric and thermomagnetic effects)  
  72.80.Ga (Transition-metal compounds)  
  73.50.Lw (Thermoelectric effects)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11174292, 51101150, and 11374306).

Corresponding Authors:  Li Liang-Liang     E-mail:  lgli@mail.ustc.edu.cn
About author:  72.20.Pa; 72.80.Ga; 73.50.Lw

Cite this article: 

Li Liang-Liang (李亮亮), Qin Xiao-Ying (秦晓英), Liu Yong-Fei (刘永飞), Liu Quan-Zhen (刘全桢) Influences of spark plasma sintering temperature on the microstructures and thermoelectric properties of (Sr0.95Gd0.05)TiO3 ceramics 2015 Chin. Phys. B 24 067202

[1] DiSalvo F J 1999 Science 285 703
[2] Zhang H, Luo J, Zhu H T, Liu Q L, Liang J K, Liu Q L, Liang J K, Li J B and Liu G Y 2012 Chin. Phys. B 21 106101
[3] Zou T H, Qin X Y, Li D, Ren B J, Sun G L, Dou Y C, Li Y Y, Li L L, Zhang J and Xin H X 2014 J. Appl. Phys. 115 053710
[4] Koumoto K, Wang Y F, Zhang R Z, Kosuga A and Funahashi R 2010 Ann. Rev. Mater. Res. 40 363
[5] Guo H H, Yang T, Tao P and Zhang Z D 2014 Chin. Phys. B 23 017201
[6] Ohta S and Nomura T 2005 Appl. Phys. Lett. 87 092108
[7] Kovalevsky A V, Yaremchenko A A, Populoh S, Weidenkaff A and Frade J R 2013 J. Appl. Phys. 113 053704
[8] Muta H, Kurosaki K and Yamanaka S 2003 J. Alloys Compd. 350 292
[9] Wang S F, Yan G Y, Chen S S, Bai Z L, Wang J L, Yu W and Fu G S 2013 Chin. Phys. B 22 037302
[10] Perillat-Merceroz C, Gauthier G, Roussel P, Huve M, Gelin P and Vannier R 2011 Chem. Mater. 23 1539
[11] Shang P P, Zhang B P, Li J F and Ma N 2010 Solid State Sci. 12 1341
[12] Ravichandran J, Siemons W, Oh D W, Kardel J T, Chari A, Heijmerikx H, Scullin M L, Majumdar A, Ramesh R and Cahill D G 2010 Phys. Rev. B 82 165126
[13] Lee H, Vashaee D, Wang D Z, Dresselhaus M S, Ren Z F and Chen G 2010 J. Appl. Phys. 107 094308
[14] Chaim R and Margulis M 2005 Mater. Sci. Eng. A 407 180
[15] Chen I W and Wang X H 2000 Nature 404 168
[16] Chaim R, Marder R, Estournes C and Shen Z 2012 Adv. Appl. Ceram. 111 280
[17] Hu J and Shen Z 2012 Acta Mater. 60 6405
[18] Baurer M, Weygand D, Gumbsch P and Hoffmann M J 2009 Scr. Mater. 61 584
[19] Moos R, Gnudi A and Hardtl K H 1995 J. Appl. Phys. 78 5042
[20] Cui Y J, He J, Amow G and Kleinke H 2010 Dalton Trans. 39 1031
[21] Wang N, Chen H J, He H C, Norimatsu W, Kusunoki M and Koumoto K 2013 Sci. Rep. 3 3449
[22] Liu J, Wang C L, Su W B, Wang H C, Zheng P, Li J C, Zhang J L and Mei L M 2009 Appl. Phys. Lett. 95 162110
[23] Ohta S, Nomura T, Ohta H and Koumoto K 2005 J. Appl. Phys. 97 034106
[1] Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然),Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(4): 047202.
[2] Reaction mechanism of metal and pyrite under high-pressure and high-temperature conditions and improvement of the properties
Yao Wang(王遥), Dan Xu(徐丹), Shan Gao(高姗), Qi Chen(陈启), Dayi Zhou(周大义), Xin Fan(范鑫), Xin-Jian Li(李欣健), Lijie Chang(常立杰),Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(6): 066206.
[3] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
[4] Facile fabrication of highly flexible, porous PEDOT: PSS/SWCNTs films for thermoelectric applications
Fu-Wei Liu(刘福伟), Fei Zhong(钟飞), Shi-Chao Wang(王世超), Wen-He Xie(谢文合), Xue Chen(陈雪), Ya-Ge Hu(胡亚歌), Yu-Ying Ge(葛钰莹), Yuan Gao(郜源), Lei Wang(王雷), and Zi-Qi Liang(梁子骐). Chin. Phys. B, 2022, 31(2): 027303.
[5] N-type core-shell heterostructured Bi2S3@Bi nanorods/polyaniline hybrids for stretchable thermoelectric generator
Lu Yang(杨璐), Chenghao Liu(刘程浩), Yalong Wang(王亚龙), Pengcheng Zhu(朱鹏程), Yao Wang(王瑶), and Yuan Deng(邓元). Chin. Phys. B, 2022, 31(2): 028204.
[6] Yb:CaF2–YF3 transparent ceramics ultrafast laser at dual gain lines
Xiao-Qin Liu(刘晓琴), Qian-Qian Hao(郝倩倩), Jie Liu(刘杰), Dan-Hua Liu(刘丹华), Wei-Wei Li(李威威), and Liang-Bi Su(苏良碧). Chin. Phys. B, 2022, 31(11): 114205.
[7] Energy band and charge-carrier engineering in skutterudite thermoelectric materials
Zhiyuan Liu(刘志愿), Ting Yang(杨婷), Yonggui Wang(王永贵), Ailin Xia(夏爱林), and Lianbo Ma(马连波). Chin. Phys. B, 2022, 31(10): 107303.
[8] Ultrabroadband mid-infrared emission from Cr2+:ZnSe-doped chalcogenide glasses prepared via hot uniaxial pressing and melt-quenching
Ke-Lun Xia(夏克伦), Guang Jia(贾光), Hao-Tian Gan(甘浩天), Yi-Ming Gui(桂一鸣), Xu-Sheng Zhang(张徐生), Zi-Jun Liu(刘自军), and Xiang Shen(沈祥). Chin. Phys. B, 2021, 30(9): 094208.
[9] Two-dimensional square-Au2S monolayer: A promising thermoelectric material with ultralow lattice thermal conductivity and high power factor
Wei Zhang(张伟), Xiao-Qiang Zhang(张晓强), Lei Liu(刘蕾), Zhao-Qi Wang(王朝棋), and Zhi-Guo Li(李治国). Chin. Phys. B, 2021, 30(7): 077405.
[10] Super deformability and thermoelectricity of bulk γ-InSe single crystals
Bin Zhang(张斌), Hong Wu(吴宏), Kunling Peng(彭坤岭), Xingchen Shen(沈星辰), Xiangnan Gong(公祥南), Sikang Zheng(郑思康), Xu Lu(卢旭), Guoyu Wang(王国玉), and Xiaoyuan Zhou(周小元). Chin. Phys. B, 2021, 30(7): 078101.
[11] Texture analysis of ultra-high coercivity Sm2Co7 hot deformation magnets
Qiang Ma(马强), Meishuang Jia(贾美爽), Zhifeng Hu(胡智峰), Ming Yue(岳明), Yanli Liu(刘艳丽), Tongyun Zhao(赵同云), and Baogen Shen(沈保根). Chin. Phys. B, 2021, 30(4): 047505.
[12] Properties of B4C-TiB2 ceramics prepared by spark plasma sintering
Jingzhe Fan(范静哲), Weixia Shen(沈维霞), Zhuangfei Zhang(张壮飞, Chao Fang(房超), Yuewen Zhang(张跃文), Liangchao Chen(陈良超), Qianqian Wang(王倩倩), Biao Wan(万彪), and Xiaopeng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(3): 038105.
[13] Structural, mechanical, electronic properties, and Debye temperature of quaternary carbide Ti3NiAl2C ceramics under high pressure: A first-principles study
Diyou Jiang(姜迪友), Wenbo Xiao(肖文波), and Sanqiu Liu(刘三秋). Chin. Phys. B, 2021, 30(3): 036202.
[14] Synthesis and thermoelectric properties of Bi-doped SnSe thin films
Jun Pang(庞军), Xi Zhang(张析), Limeng Shen(申笠蒙), Jiayin Xu(徐家胤), Ya Nie(聂娅), and Gang Xiang(向钢). Chin. Phys. B, 2021, 30(11): 116302.
[15] 575-fs passively mode-locked Yb:CaF2 ceramic laser
Cong Wang(王聪), Qian-Qian Hao(郝倩倩), Wei-Wei Li(李威威), Hai-Jun Huang(黄海军), Shao-Zhao Wang(王绍钊), Da-Peng Jiang(姜大朋), Jie Liu(刘杰), Bing-Chu Mei(梅炳初), Liang-Bi Su(苏良碧). Chin. Phys. B, 2020, 29(7): 074205.
No Suggested Reading articles found!