Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(6): 063301    DOI: 10.1088/1674-1056/24/6/063301
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Exploring photocurrent output from donor/acceptor bulk-heterojunctions by monitoring exciton quenching

Wang Xin-Ping (王新平)a, He Zhi-Qun (何志群)a, Liang Chun-Jun (梁春军)a, Qiu Hai-An (邱海安)a, Jing Xi-Ping (荆西平)b
a Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044, China;
b College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
Abstract  In this work, a series of polymer bulk-heterojunctions is fabricated based on the combinations of different donors (Ds) (P3HT and PCPDTBT) and acceptors (As) (PCBM, ICBA, and F8BT). Exciton quenching efficiencies of the D–A pairs are obtained in order to quantify charge-transfer between the donor and the acceptor via a modified approach developed in conjunction with experimental results of optical absorption and photoluminescence spectra. It is discovered that the exciton quenching efficiency in the combination of PCPDTBT:PCBM and P3HT:PCBM reaches 70% and over, but in PCPDTBT:ICBA it is about 12%. A relatively high ΔLUMOdonor-acceptor results in a relatively high exciton quenching efficiency, which is responsible for better charge separation. The results agreed well with the photocurrent effect of the heterojunction layers. The work offers a convenient way to predict a potentially promising photovoltaic material with a selected D–A pair.
Keywords:  exciton quenching      optical absorption      photoluminescence      photocurrent  
Received:  21 December 2014      Revised:  17 January 2015      Accepted manuscript online: 
PACS:  33.50.-j (Fluorescence and phosphorescence; radiationless transitions, quenching (intersystem crossing, internal conversion))  
  78.20.-e (Optical properties of bulk materials and thin films)  
  73.50.Pz (Photoconduction and photovoltaic effects)  
  88.40.jr (Organic photovoltaics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 21174016 and 11474017), the Fundamental Research Funds for the Central Universities (Grant No. 2013JBZ004), and the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120009110031).
Corresponding Authors:  He Zhi-Qun     E-mail:  zhqhe@bjtu.edu.cn
About author:  33.50.-j; 78.20.-e; 73.50.Pz; 88.40.jr

Cite this article: 

Wang Xin-Ping (王新平), He Zhi-Qun (何志群), Liang Chun-Jun (梁春军), Qiu Hai-An (邱海安), Jing Xi-Ping (荆西平) Exploring photocurrent output from donor/acceptor bulk-heterojunctions by monitoring exciton quenching 2015 Chin. Phys. B 24 063301

[1] Kim Y, Ballantyne A M, Nelson J and Bradley D D C 2009 Org. Electron. 10 205
[2] You H L and Zhang C F 2009 Chin. Phys. B 18 2096
[3] Yu X, Hu Z Y, Huang Z H, Yu X M, Zhang J J, Zhao G S and Zhao Y 2013 Chin. Phys. B 22 118801
[4] Kawano K, Sakai J, Yahiro M and Adachi C 2009 Sol. Energy Mater. Sol. Cells 93 514
[5] Kim Y S, Lee Y, Kim J K, Seo E O, Lee E W, Lee W, Han S H and Lee S H 2010 Curr. Appl. Phys. 10 985
[6] Hayashi Y, Sakuragi H, Soga T, Alexandrou I and Amaratunga G A J 2008 Colloids Surf., A Physicochem. Eng. Aspects 313 422
[7] Liu X D, Zhao S L, Xu Z, Zhang F J, Zhang T H, Gong W, Yan G, Kong C, Wang Y S and Xu X R 2011 Chin. Phys. B 20 068801
[8] Gao F and Inganäs O 2014 Phys. Chem. Chem. Phys. 16 20291
[9] Clarke T M and Durrant J R 2010 Chem. Rev. 110 6736
[10] Deibel C, Strobel T and Dyakonov V 2010 Adv. Mater. 22 4097
[11] Singh S, Pandit B, Basel T P, Li S, Laird D and Vardeny Z V 2012 Phys. Rev. B 85 205206
[12] Singh S, Pandit B, Hukic-Markosian G, Basel T P, Vardeny Z V, Li S and Laird D 2012 J. Appl. Phys. 112 123505
[13] Li R H, Meng W M, Peng Y Q, Ma C Z, Wang R S, Xie H W, Wang Y and Ye Z C 2010 Acta Phys. Sin. 59 2126 (in Chinese)
[14] Feng W and Gao Z K 2008 Acta Phys. Sin. 57 2567 (in Chinese)
[15] Piris J, Dykstra T E, Bakulin A A, van Loosdrecht P H M, Knulst W, Trinh M T, Schins J M and Siebbeles L D A 2009 J. Phys. Chem. C 113 14500
[16] Howard I A, Mauer R, Meister M and Laquai F 2010 J. Am. Chem. Soc. 132 14866
[17] Kippelen B and Bredas J L 2009 Energy Environ. Sci. 2 251
[18] Singh S and Vardeny Z V 2013 Materials 6 897
[19] Dyakonov V, Riedel I, Chiguvare Z, Deibel C, Parisi J, Brabec C J, Sariciftci N S and Hummelen J C 2002 Mat. Res. Soc. Proc. 725 P7.10.1
[20] Smilowitz L, Sariciftci N S, Wu R, Gettinger C, Heeger A J and Wud F 1993 Phys. Rev. B 47 13835
[21] Wei X, Vardeny Z V, Sariciftci N S and Heeger A J 1996 Phys. Rev. B 53 2187
[22] Mauer R 2012 "Charge Generation, Transport and Recombination in Organic Solar Cells", Ph. D. Dissertation (Mainz: Johannes Gutenberg-Universitaet Mainz)
[23] Brabec C J, Zerza G, Cerullo G, De Silvestri S, Luzzati S, Hummelen J C and Sariciftci S 2001 Chem. Phys. Lett. 340 232
[24] Zhang F, Jespersen K G, Björström C, Svensson M, Andersson M R, Sundström V, Magnusson K, Moons E, Yartsev A and Inganäs O 2006 Adv. Funct. Mater. 16 667
[25] Pierre A, Lu S, Howard I A, Facchetti A and Arias A C 2013 J. Appl. Phys. 113 154506
[26] McNeill C R, Abrusci A, Hwang I, Ruderer M A, Müller-Buschbaum P and Greenham N C 2009 Adv. Funct. Mater. 19 3103
[27] Kim J Y, Lee K, Coates N E, Moses D, Nguyen T Q, Dante M and Heeger A J 2007 Science 317 222
[28] Brédas J L, Beljonne D, Coropceanu V and Cornil J 2004 Chem. Rev. 104 4971
[29] Mu L, He Z, Kong X, Hui G, Xu M, Liang C, Jing X, Danel A and Kulig E 2010 Chem. Phys. Chem. 11 2623
[30] Jenekhe S A and Osaheni J A 1994 Science 265 765
[31] Morita S, Zakhidov A A and Yoshino K 1992 Solid State Commun. 82 249
[32] He Y, Chen H Y, Hou J and Li Y 2010 J. Am. Chem. Soc. 132 1377
[33] Kim Y, Cook S, Choulis S A, Nelson J, Durrant J R and Bradley D D C 2004 Chem. Mater. 16 4812
[34] McNeill C R and Greenham N C 2008 Appl. Phys. Lett. 93 203310
[35] Tamai Y, Tsuda K, Ohkita H, Benten H and Ito S 2014 Phys. Chem. Chem. Phys. 16 20338
[1] Thermally enhanced photoluminescence and temperature sensing properties of Sc2W3O12:Eu3+ phosphors
Yu-De Niu(牛毓德), Yu-Zhen Wang(汪玉珍), Kai-Ming Zhu(朱凯明), Wang-Gui Ye(叶王贵), Zhe Feng(冯喆), Hui Liu(柳挥), Xin Yi(易鑫), Yi-Huan Wang(王怡欢), and Xuan-Yi Yuan(袁轩一). Chin. Phys. B, 2023, 32(2): 028703.
[2] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[3] Theoretical study of M6X2 and M6XX' structure (M = Au, Ag; X,X' = S, Se): Electronic and optical properties, ability of photocatalytic water splitting, and tunable properties under biaxial strain
Jiaqi Li(李嘉琪), Xinlu Cheng(程新路), and Hong Zhang(张红). Chin. Phys. B, 2022, 31(9): 097101.
[4] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[5] Enhancing performance of GaN-based LDs by using GaN/InGaN asymmetric lower waveguide layers
Wen-Jie Wang(王文杰), Ming-Le Liao(廖明乐), Jun Yuan(袁浚), Si-Yuan Luo(罗思源), and Feng Huang(黄锋). Chin. Phys. B, 2022, 31(7): 074206.
[6] Exploration of structural, optical, and photoluminescent properties of (1-x)NiCo2O4/xPbS nanocomposites for optoelectronic applications
Zein K Heiba, Mohamed Bakr Mohamed, Noura M Farag, and Ali Badawi. Chin. Phys. B, 2022, 31(6): 067801.
[7] Exciton luminescence and many-body effect of monolayer WS2 at room temperature
Jian-Min Wu(吴建民), Li-Hui Li(黎立辉), Wei-Hao Zheng(郑玮豪), Bi-Yuan Zheng(郑弼元), Zhe-Yuan Xu(徐哲元), Xue-Hong Zhang(张学红), Chen-Guang Zhu(朱晨光), Kun Wu(吴琨), Chi Zhang(张弛), Ying Jiang(蒋英),Xiao-Li Zhu(朱小莉), and Xiu-Juan Zhuang(庄秀娟). Chin. Phys. B, 2022, 31(5): 057803.
[8] Effect of different catalysts and growth temperature on the photoluminescence properties of zinc silicate nanostructures grown via vapor-liquid-solid method
Ghfoor Muhammad, Imran Murtaza, Rehan Abid, and Naeem Ahmad. Chin. Phys. B, 2022, 31(5): 057801.
[9] Graphene-based heterojunction for enhanced photodetectors
Haiting Yao(姚海婷), Xin Guo(郭鑫), Aida Bao(鲍爱达), Haiyang Mao(毛海央),Youchun Ma(马游春), and Xuechao Li(李学超). Chin. Phys. B, 2022, 31(3): 038501.
[10] Boosting the performance of crossed ZnO microwire UV photodetector by mechanical contact homo-interface barrier
Yinzhe Liu(刘寅哲), Kewei Liu(刘可为), Jialin Yang(杨佳霖), Zhen Cheng(程祯), Dongyang Han(韩冬阳), Qiu Ai(艾秋), Xing Chen(陈星), Yongxue Zhu(朱勇学), Binghui Li(李炳辉), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2022, 31(10): 106101.
[11] Recombination-induced voltage-dependent photocurrent collection loss in CdTe thin film solar cell
Ling-Ling Wu(吴玲玲), Guang-Wei Wang(王光伟), Juan Tian(田涓), Dong-Ming Wang(王东明), and De-Liang Wang(王德亮). Chin. Phys. B, 2022, 31(10): 108803.
[12] Pressure- and temperature-dependent luminescence from Tm3+ ions doped in GdYTaO4
Peng-Yu Zhou(周鹏宇), Xiu-Ming Dou(窦秀明), Bao-Quan Sun(孙宝权), Ren-Qin Dou(窦仁琴), Qing-Li Zhang(张庆礼), Bao Liu(刘鲍), Pu-Geng Hou(侯朴赓), Kai-Lin Chi(迟凯粼), and Kun Ding(丁琨). Chin. Phys. B, 2022, 31(1): 017101.
[13] Magnetic polaron-related optical properties in Ni(II)-doped CdS nanobelts: Implication for spin nanophotonic devices
Fu-Jian Ge(葛付建), Hui Peng(彭辉), Ye Tian(田野), Xiao-Yue Fan(范晓跃), Shuai Zhang(张帅), Xian-Xin Wu(吴宪欣), Xin-Feng Liu(刘新风), and Bing-Suo Zou(邹炳锁). Chin. Phys. B, 2022, 31(1): 017802.
[14] Research of NO2 vertical profiles with look-up table method based on MAX-DOAS
Yingying Guo(郭映映), Suwen Li(李素文), Fusheng Mou(牟福生), Hexiang Qi(齐贺香), and Qijin Zhang(张琦锦). Chin. Phys. B, 2022, 31(1): 014212.
[15] Controllable preparation and disorder-dependent photoluminescence of morphologically different C60 microcrystals
Wen Cui(崔雯), De-Jun Li(李德军), Jin-Liang Guo(郭金良), Lang-Huan Zhao(赵琅嬛), Bing-Bing Liu(刘冰冰), and Shi-Shuai Sun(孙士帅). Chin. Phys. B, 2021, 30(8): 086101.
No Suggested Reading articles found!