Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(5): 057301    DOI: 10.1088/1674-1056/24/5/057301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Modified method of surface plasmons in metal superlattices

Zhang Yu-Liang (张宇亮)a, Wang Xuan-Zhang (王选章)b
a Department of Physics, Harbin Institute of Technology, Harbin 150001, China;
b Key Laboratory for Photonic and Electronic Bandgap Materials, the State Ministry of Education, and School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China
Abstract  We present a modified method to solve the surface plasmons (SPs) of semi-infinite metal/dielectric superlattices and predicted new SP modes in physics. We find that four dispersion-equation sets and all possible SP modes are determined by them. Our analysis and numerical calculations indicate that besides the SP mode obtained in the original theory, the other two SP modes are predicted, which have either a positive group velocity or a negative group velocity. We also point out the possible defect in the previous theoretical method in accordance to the linear algebra principle.
Keywords:  surface plasmon      dispersion equations      metal-layer arrays      metal/dielectric superlattices  
Received:  28 August 2014      Revised:  24 December 2014      Accepted manuscript online: 
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  73.21.Cd (Superlattices)  
  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
  42.70.Qs (Photonic bandgap materials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11074061).
Corresponding Authors:  Wang Xuan-Zhang     E-mail:  xzwang696@126.com
About author:  73.20.Mf; 73.21.Cd; 78.67.Pt; 42.70.Qs

Cite this article: 

Zhang Yu-Liang (张宇亮), Wang Xuan-Zhang (王选章) Modified method of surface plasmons in metal superlattices 2015 Chin. Phys. B 24 057301

[1] Morishita T, Togami Y and Tsushima K 1985 J. Phys. Soc. Jpn. 54 37
[2] Weller D, Alwarado S F, Gudar W, Schroder K and Campagna M 1985 Phys. Rev. Lett. 54 1555
[3] Camley R E and Stamps R L 1993 J. Phys.: Condens. Matters 5 3727
[4] Binasch G, Grunberg P, Saurenbach F and Zinn W 1989 Phys. Rev. B 39 4828
[5] Baibich M N, Brotto J M, Fert A, Van-Dau F N, Petroff F, Etiennce P, Creuzet P, Friederich A and Chazelas J 1988 Phys. Rev. Lett. 61 2472
[6] Barnas J, Fuss A, Camley R E, Grunberg P and Zinn W 1990 Phys. Rev. B 42 8110
[7] Ebbesen T W, Lezec H J, Ghaemi H F, Thio T and Wolff P A 1998 Nature 391 667
[8] Pitarke J M, Silkin V M, Chulkov E V and Echenique P M 2007 Rep. Prog. Phys. 70 1
[9] Barnes W L, Dereux A and Ebbesen T W 2003 Nature 424 824
[10] Pendry J B, Martin-Moreno L and Garica-Vidal F J 2005 Science 305 847
[11] Liu Y, Ma Z, Zhao Y F, Meenakshi S and Wang J 2013 Chin. Phys. B 22 067302
[12] Camley R E and Mills D L 1984 Phys. Rev. B 29 1695
[13] Camley R E and Mills D L 1988 Phys. Rev. B 37 10378
[14] Johnson B L, Weiler J T and Camley R E 1985 Phys. Rev. B 32 6544
[15] Mahmood S H, Malkawi A and Abu-Aljarayesh I 1989 Phys. Rev. B 40 988
[16] Kushwaha M S 1990 Phys. Rev. B 41 5602
[17] Albuquerque E L and Cottam M G 1993 Phys. Rep. 233 67
[18] Yan M and Qiu M 2007 J. Opt. Soc. Am. B 24 2333
[19] Palik E D 1985 Handbook of Optical Constants of Solids Part II (Orlando: Academic Press) Subpart 1
[1] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[2] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[3] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[4] Chiral lateral optical force near plasmonic ring induced by Laguerre-Gaussian beam
Ying-Dong Nie(聂英东), Zhi-Guang Sun(孙智广), and Yu-Rui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(1): 018702.
[5] Effect of surface plasmon coupling with radiating dipole on the polarization characteristics of AlGaN-based light-emitting diodes
Yi Li(李毅), Mei Ge(葛梅), Meiyu Wang(王美玉), Youhua Zhu(朱友华), and Xinglong Guo(郭兴龙). Chin. Phys. B, 2022, 31(7): 077801.
[6] Numerical study of a highly sensitive surface plasmon resonance sensor based on circular-lattice holey fiber
Jian-Fei Liao(廖健飞), Dao-Ming Lu(卢道明), Li-Jun Chen(陈丽军), and Tian-Ye Huang(黄田野). Chin. Phys. B, 2022, 31(6): 060701.
[7] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
[8] Multi-frequency focusing of microjets generated by polygonal prisms
Yu-Jing Yang(杨育静), De-Long Zhang(张德龙), and Ping-Rang Hua(华平壤). Chin. Phys. B, 2022, 31(3): 034201.
[9] Independently tunable dual resonant dip refractive index sensor based on metal—insulator—metal waveguide with Q-shaped resonant cavity
Haowen Chen(陈颢文), Yunping Qi(祁云平), Jinghui Ding(丁京徽), Yujiao Yuan(苑玉娇), Zhenting Tian(田振廷), and Xiangxian Wang(王向贤). Chin. Phys. B, 2022, 31(3): 034211.
[10] High sensitivity plasmonic temperature sensor based on a side-polished photonic crystal fiber
Zhigang Gao(高治刚), Xili Jing(井西利), Yundong Liu(刘云东), Hailiang Chen(陈海良), and Shuguang Li(李曙光). Chin. Phys. B, 2022, 31(2): 024207.
[11] Nano Ag-enhanced photoelectric conversion efficiency in all-inorganic, hole-transporting-layer-free CsPbIBr2 perovskite solar cells
Youming Huang(黄友铭), Yizhi Wu(吴以治), Xiaoliang Xu(许小亮), Feifei Qin(秦飞飞), Shihan Zhang(张诗涵), Jiakai An(安嘉凯), Huijie Wang(王会杰), and Ling Liu(刘玲). Chin. Phys. B, 2022, 31(12): 128802.
[12] Sensitivity improvement of aluminum-based far-ultraviolet nearly guided-wave surface plasmon resonance sensor
Tianqi Li(李天琦), Shujing Chen(陈淑静), and Chengyou Lin(林承友). Chin. Phys. B, 2022, 31(12): 124208.
[13] Enhanced photon emission by field emission resonances and local surface plasmon in tunneling junction
Jian-Mei Li(李健梅), Dong Hao(郝东), Li-Huan Sun(孙丽欢), Xiang-Qian Tang(唐向前), Yang An(安旸), Xin-Yan Shan(单欣岩), and Xing-Hua Lu(陆兴华). Chin. Phys. B, 2022, 31(11): 116801.
[14] Ultra-wideband surface plasmonic bandpass filter with extremely wide upper-band rejection
Xue-Wei Zhang(张雪伟), Shao-Bin Liu(刘少斌), Qi-Ming Yu(余奇明), Ling-Ling Wang(王玲玲), Kun Liao(廖昆), and Jian Lou(娄健). Chin. Phys. B, 2022, 31(11): 114101.
[15] Enhanced and tunable circular dichroism in the visible waveband by coupling of the waveguide mode and local surface plasmon resonances in double-layer asymmetric metal grating
Liu-Li Wang(王刘丽), Yang Gu(顾阳), Yi-Jing Chen(陈怡静), Ya-Xian Ni(倪亚贤), and Wen Dong(董雯). Chin. Phys. B, 2022, 31(11): 118103.
No Suggested Reading articles found!