Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(2): 026102    DOI: 10.1088/1674-1056/24/2/026102
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Dynamics of a ± 1/2 defect pair in a confined geometry: A thin hybrid aligned nematic cell

Lu Li-Xia (路丽霞)a b c, Zhang Zhi-Dong (张志东)c
a Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China;
b University of Chinese Academy of Sciences, Beijing 100049, China;
c School of Science, Hebei University of Technology, Tianjin 300401, China
Abstract  Confined geometry can change the defect structure and its properties. In this paper, we investigate numerically the dynamics of a dipole of ± 1/2 parallel wedge disclination lines in a confined geometry: a thin hybrid aligned nematic (HAN) cell, based on the Landau-de Gennes theory. When the cell gap d is larger than a critical value of 12ζ (where ζ is the characteristic length for order-parameter change), the pair annihilates. A pure HAN configuration without defect is formed in an equilibrium state. In the confined geometry of d ≤ 12ζ, the diffusion process is discovered for the first time and an eigenvalue exchange configuration is formed in an equilibrium state. The eigenvalue exchange configuration is induced by different essential reasons. When 10ζ <d ≤ 12ζ, the two defects coalesce and annihilate. The biaxial wall is created by the inhomogeneous distortion of the director, which results in the eigenvalue exchange configuration. When d ≤ 10ζ, the defects do not collide and the eigenvalue exchange configuration originates from the biaxial seeds concentrated at the defects.
Keywords:  ±      1/2 defect pair      dynamics      eigenvalue exchange configuration      confined geometry  
Received:  25 June 2014      Revised:  11 September 2014      Accepted manuscript online: 
PACS:  61.30.Jf (Defects in liquid crystals)  
  64.70.qj (Dynamics and criticality)  
  61.20.Ja (Computer simulation of liquid structure)  
  61.30.Hn (Surface phenomena: alignment, anchoring, anchoring transitions, surface-induced layering, surface-induced ordering, wetting, prewetting transitions, and wetting transitions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11374087) and the Key Subject Construction Project of Hebei Province University.
Corresponding Authors:  Zhang Zhi-Dong     E-mail:  zhidong_zhang1961@163.com

Cite this article: 

Lu Li-Xia (路丽霞), Zhang Zhi-Dong (张志东) Dynamics of a ± 1/2 defect pair in a confined geometry: A thin hybrid aligned nematic cell 2015 Chin. Phys. B 24 026102

[1] CarboneG, Lombardo G, Barberi R, Musevic I and Tkalec U 2009 Phys. Rev. Lett. 103 167801
[2] Kurik M V and Lavrentovich O D 1988 Sov. Phy. Usp. 31 196
[3] Tiribocchi A, Gonnella G, Marenduzzo D and Orlandini E 2010 Appl. Phys. Lett. 97 143505
[4] Mermin N D 1979 Rev. Mod. Phys. 51 591
[5] Takuya O and Junichi F 2012 Nat. Commun. 3 701
[6] Ohzono T, Fukuda J I, Suzuki K and Yamaguchi T 2012 Phys. Rev. E 86 030701
[7] Nelson D R 2002 Nano Lett. 2 1125
[8] Tkalec U, Ravnik M, Čopar S, Žumer S and Muševič I 2011 Science 333 62
[9] Ravnik M, Alexander G P, Yeomans J M and Žumer S 2011 Natl. Acad. Sci. USA 108 5188
[10] Voloschenko D, Pishnyak O P, Shiyanovskii S V and Lavrentovich O D 2002 Phys. Rev. E 65 060701(R)
[11] Pires D, Fleury J B and Galerne Y 2007 Phys. Rev. Lett. 98 247801
[12] Fleury J B, Pires D and Galerne Y 2009 Phys. Rev. Lett. 103 267801
[13] Yoon D K, Choi M C, Kim Y H, Kim M W, Lavrentovich O D and Jung H T 2007 Nat. Mater. 6 866
[14] Milette J, Cowling S J, Toader V, Lavigne C, Saez I M, Lennox R B, Goodby J W and Reven L 2012 Soft Matter 8 173
[15] Coursault D, Grand J, Zappone B, Ayeb H, Lévi G, Félidj N and Lacaze E 2012 Adv. Mater. 24 1461
[16] Bisi F, Virga E G and Durand G E 2004 Phys. Rev. E 70 042701
[17] Ambrožič M, Kralj S and Virga E G 2007 Phys. Rev. E 75 031708
[18] Lu L X, Zhang Z D and Zhou X 2013 Acta Phys. Sin. 62 226101 (in Chinese)
[19] Zhou X and Zhang Z D 2013 Int. J. Mol. Sci. 14 24135
[20] Gennes P G and Prost J 2008 The Physics of Liquid Crystals, 2nd edn. (Beijing: Science Press) p. 166
[21] Minoura K, Kimura Y, Ito K, Hayakawa R and Miura T 1998 Phys. Rev. E 58 643
[22] Bogi A, Martinot-Lagarde P, Dozov I and Nobili M 2002 Phys. Rev. Lett. 89 225501
[23] Shiwaku T, Nakai A, Hasegawa H and Hashimoto T 1990 Macromolecules 23 1590
[24] Chuang I, Turok N and Yurke B 1991 Phys. Rev. Lett. 66 2472
[25] Pargellis A, Turok N and Yurke B 1991 Phys. Rev. Lett. 67 1570
[26] Pargellis A N, Finn P, Goodby J W, Panizza P, Yurke B and Cladis P E 1992 Phys. Rev. A 46 7765
[27] Chuang I, Yurke B, Pargellis A N and Turok N 1993 Phys. Rev. E 47 3343
[28] Ding D K and Thomas E L 1994 Mol. Cryst. Liq. Cryst. 241 103
[29] Pargellis A N, Mendez J, Srinivasarao M and Yurke B 1996 Phys. Rev. E 53 R25
[30] Minoura K, Kimura Y, Ito K and Hayakawa R 1997 Mol. Cryst. Liq. Cryst. 302 345
[31] Wang W, Shiwaku T and Hashimoto T 1998 J. Chem. Phys. 108 1618
[32] Svensek D and Žumer S 2002 Phys. Rev. E 66 021712
[33] Tóth G, Denniston C and Yeomans J M 2002 Phys. Rev. Lett. 88 105504
[34] Bradač Z, Kralj S, Svetec M and Žumer S 2003 Phys. Rev. E 67 050702(R)
[35] Dierking I, Marshall O, Wright J and Bulleid N 2005 Phys. Rev. E 71 061709
[36] Svetec M, Kralj S, Bradac Z and Žumer S 2006 Eur. Phys. J. E 20 71
[37] Guimarães R R, Mendes R S, Fernandes P R G and Mukai H 2013 J. Phys.: Condens. Matter 25 404203
[38] Giomi L, Bowick M J, Ma X and Marchetti M C 2013 Phys. Rev. Lett. 110 228101
[39] Ribeiro H V, Guimarães R R, Teixeira-Souza R T, Mukai H, Fernandes P R G, Lenzi E K and Mendes R S 2013 Phys. Rev. E 87 054501
[40] Bajc J, Peroli G G, Virga E G and Žumer S 2002 Liquid Cryst. 29 213
[41] Bisi F, Gartland E C, Rosso R and Virga E G 2003 Phys. Rev. E 68 021707
[42] Barberi R, Ciuchi F, Durand G, Iovane M, Sikharulidze D, Sonnet A and Virga E 2004 Eur. Phys. J. E 13 61
[43] Lombardo G, Ayeb H and Barberi R 2008 Phys. Rev. E 77 051708
[44] Schopohl N and Sluckin T J 1987 Phys. Rev. Lett. 59 2582
[45] Qian T Z and Sheng P 1997 Phys. Rev. E 55 7111
[46] Gennes P G and Prost J 2008 The Physics of Liquid Crystals, 2nd edn. (Beijing: Science Press) p. 165
[1] Cascade excitation of vortex motion and reentrant superconductivity in flexible Nb thin films
Liping Zhang(张丽萍), Zuyu Xu(徐祖雨), Xiaojie Li(黎晓杰), Xu Zhang(张旭), Mingyang Qin(秦明阳), Ruozhou Zhang(张若舟), Juan Xu(徐娟), Wenxin Cheng(程文欣), Jie Yuan(袁洁), Huabing Wang(王华兵), Alejandro V. Silhanek, Beiyi Zhu(朱北沂), Jun Miao(苗君), and Kui Jin(金魁). Chin. Phys. B, 2023, 32(4): 047302.
[2] Conductive path and local oxygen-vacancy dynamics: Case study of crosshatched oxides
Z W Liang(梁正伟), P Wu(吴平), L C Wang(王利晨), B G Shen(沈保根), and Zhi-Hong Wang(王志宏). Chin. Phys. B, 2023, 32(4): 047303.
[3] Heterogeneous hydration patterns of G-quadruplex DNA
Cong-Min Ji(祭聪敏), Yusong Tu(涂育松), and Yuan-Yan Wu(吴园燕). Chin. Phys. B, 2023, 32(2): 028702.
[4] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[5] Realization of the iSWAP-like gate among the superconducting qutrits
Peng Xu(许鹏), Ran Zhang(张然), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(2): 020306.
[6] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[7] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[8] Effects of adjacent bubble on spatiotemporal evolutions of mechanical stresses surrounding bubbles oscillating in tissues
Qing-Qin Zou(邹青钦), Shuang Lei(雷双), Zhang-Yong Li(李章勇), and Dui Qin(秦对). Chin. Phys. B, 2023, 32(1): 014302.
[9] Linear analysis of plasma pressure-driven mode in reversed shear cylindrical tokamak plasmas
Ding-Zong Zhang(张定宗), Xu-Ming Feng(冯旭铭), Jun Ma(马骏), Wen-Feng Guo(郭文峰), Yan-Qing Huang(黄艳清), and Hong-Bo Liu(刘洪波). Chin. Phys. B, 2023, 32(1): 015201.
[10] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[11] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[12] Finite superconducting square wire-network based on two-dimensional crystalline Mo2C
Zhen Liu(刘震), Zi-Xuan Yang(杨子萱), Chuan Xu(徐川), Jia-Ji Zhao(赵嘉佶), Lu-Junyu Wang(王陆君瑜), Yun-Qi Fu(富云齐), Xue-Lei Liang(梁学磊), Hui-Ming Cheng(成会明), Wen-Cai Ren(任文才), Xiao-Song Wu(吴孝松), and Ning Kang(康宁). Chin. Phys. B, 2022, 31(9): 097404.
[13] State-to-state integral cross sections and rate constants for the N+(3P)+HD→NH+/ND++D/H reaction: Accurate quantum dynamics studies
Hanghang Chen(陈航航), Zijiang Yang(杨紫江), and Maodu Chen(陈茂笃). Chin. Phys. B, 2022, 31(9): 098204.
[14] Atomic structure and collision dynamics with highly charged ions
Xinwen Ma(马新文), Shaofeng Zhang(张少锋), Weiqiang Wen(汶伟强), Zhongkui Huang(黄忠魁), Zhimin Hu(胡智民), Dalong Guo(郭大龙), Junwen Gao(高俊文), Bennaceur Najjari, Shenyue Xu(许慎跃), Shuncheng Yan(闫顺成), Ke Yao(姚科), Ruitian Zhang(张瑞田), Yong Gao(高永), and Xiaolong Zhu(朱小龙). Chin. Phys. B, 2022, 31(9): 093401.
[15] Probing subcycle spectral structures and dynamics of high-order harmonic generation in crystals
Long Lin(林龙), Tong-Gang Jia(贾铜钢), Zhi-Bin Wang(王志斌), and Peng-Cheng Li(李鹏程). Chin. Phys. B, 2022, 31(9): 093202.
No Suggested Reading articles found!