Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(9): 097307    DOI: 10.1088/1674-1056/23/9/097307
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Schottky forward current transport mechanisms in AlGaN/GaN HEMTs over a wide temperature range

Wu Mei (武玫)a b, Zheng Da-Yong (郑大勇)c, Wang Yuan (王媛)b, Chen Wei-Wei (陈伟伟)b, Zhang Kai (张凯)a b, Ma Xiao-Hua (马晓华)b, Zhang Jin-Cheng (张进成)a b, Hao Yue (郝跃)a b
a School of Microelectronics, Xidian University, Xi'an 710071, China;
b Key Laboratory for Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071, China;
c The Fifth Electronics Research Institute of Ministry of Industry and Information Technology, Guangzhou 510610, China
Abstract  The behavior of Schottky contacts in AlGaN/GaN high electron mobility transistors (HEMTs) is investigated by temperature-dependent current-voltage (T-I-V) measurements from 300 K to 473 K. The ideality factor and barrier height determined based on the thermionic emission (TE) theory are found to be strong functions of temperature, while present a great deviation from the theoretical value, which can be expounded by the barrier height inhomogeneities. In order to determine the forward current transport mechanisms, the experimental data are analyzed using numerical fitting method, considering the temperature-dependent series resistance. It is observed that the current flow at room temperature can be attributed to the tunneling mechanism, while thermionic emission current gains a growing proportion with an increase in temperature. Finally, the effective barrier height is derived based on the extracted thermionic emission component, and an evaluation of the density of dislocations is made from the I-V characteristics, giving a value of 1.49×107 cm-2.
Keywords:  AlGaN/GaN HEMTs      Schottky contacts      forward current transport mechanism      temperature dependence  
Received:  18 March 2014      Revised:  08 April 2014      Accepted manuscript online: 
PACS:  73.61.Ey (III-V semiconductors)  
  07.20.Dt (Thermometers)  
  85.30.Hi (Surface barrier, boundary, and point contact devices)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61334002) and the Opening Project of Science and Technology on Reliability Physics and Application Technology of Electronic Component Laboratory of China (Grant No. ZHD201206).
Corresponding Authors:  Hao Yue     E-mail:  yhao@xidian.edu.cn

Cite this article: 

Wu Mei (武玫), Zheng Da-Yong (郑大勇), Wang Yuan (王媛), Chen Wei-Wei (陈伟伟), Zhang Kai (张凯), Ma Xiao-Hua (马晓华), Zhang Jin-Cheng (张进成), Hao Yue (郝跃) Schottky forward current transport mechanisms in AlGaN/GaN HEMTs over a wide temperature range 2014 Chin. Phys. B 23 097307

[1] Yan D W, Lu H, Cao D S, Chen D J, Zhang R and Zheng Y D 2010 Appl. Phys. Lett. 97 153503
[2] Turuvekere S, Karumuri N, Rahman A A, Bhattacharya A, DasGupta A and DasGupta N 2013 IEEE Electron Dev. Lett. 60 3157
[3] Cheung S K and Cheung N W 1986 Appl. Phys. Lett. 49 85
[4] Cao Z F, Lin Z J, Lü Y J, Luan C B, Yu Y X, Chen H and Wang Z G 2012 Chin. Phys. B 21 017103
[5] Yu A Y C and Snow E H 1968 J. Appl. Phys. 39 3008
[6] Donoval D, Barus M and Zdimal M 1991 Solid-State Electron. 34 1365
[7] Kotani J, Tajima M, Kasai S and Hashizume T 2007 Appl. Phys. Lett. 91 093501
[8] Hasegawa H and Susumu O 2002 J. Vac. Sci. Technol. B 20 041647
[9] Estropov V V, Dzhumaeva M, Zhilyaev Y V, Nazarov N, Sitnikova A A and Fedorov L M 2000 Semiconductors 34 1305
[10] Donoval D, Chvala A, Sramaty R, Kovac J, Morvan E, Dua Ch, Diforte-Poisson M A and Kordos P 2011 J. Appl. Phys. 109 063711
[11] Arslan E, Altinadal S, Ozcelik S and Ozbay E 2009 J. Appl. Phys. 105 023705
[12] Zhang A P, Rowland L B, Kaminsky E B, Tilak V, Grande J C, Teetsov J, Vertiatchikh A and Eastman L F 2014 Chin. Phys. B 23 027101
[1] Heat transport properties within living biological tissues with temperature-dependent thermal properties
Ying-Ze Wang(王颖泽), Xiao-Yu Lu(陆晓宇), and Dong Liu(刘栋). Chin. Phys. B, 2023, 32(1): 014401.
[2] High power-added-efficiency AlGaN/GaN HEMTs fabricated by atomic level controlled etching
Xinchuang Zhang(张新创), Bin Hou(侯斌), Fuchun Jia(贾富春), Hao Lu(芦浩), Xuerui Niu(牛雪锐), Mei Wu(武玫), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(2): 027301.
[3] Temperature dependence of spin pumping in YIG/NiOx/W multilayer
Lijun Ni(倪丽君), Wenqiang Wang(王文强), Lichuan Jin(金立川), Jiandong Ye(叶建东), Hehe Gong(巩贺贺), Xiang Zhan(战翔), Zhendong Chen(陈振东), Longlong Zhang(张龙龙), Xingze Dai(代兴泽), Yao Li(黎遥), Rong Zhang(张荣), Yi Yang(杨燚), Huaiwu Zhang(张怀武), Ronghua Liu(刘荣华), Lina Chen(陈丽娜), and Yongbing Xu(徐永兵). Chin. Phys. B, 2022, 31(12): 128504.
[4] A novel Si-rich SiN bilayer passivation with thin-barrier AlGaN/GaN HEMTs for high performance millimeter-wave applications
Zhihong Chen(陈治宏), Minhan Mi(宓珉瀚), Jielong Liu(刘捷龙), Pengfei Wang(王鹏飞), Yuwei Zhou(周雨威), Meng Zhang(张濛), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(11): 117105.
[5] Alpha particle detector with planar double Schottky contacts directly fabricated on semi-insulating GaN:Fe template
Qun-Si Yang(羊群思), Qing Liu(刘清), Dong Zhou(周东), Wei-Zong Xu(徐尉宗), Yi-Wang Wang(王宜望), Fang-Fang Ren(任芳芳), and Hai Lu(陆海). Chin. Phys. B, 2021, 30(11): 117303.
[6] Impact of oxygen in electrical properties and hot-carrier stress-induced degradation of GaN high electron mobility transistors
Lixiang Chen(陈丽香), Min Ma(马敏), Jiecheng Cao(曹杰程), Jiawei Sun(孙佳惟), Miaoling Que(阙妙玲), and Yunfei Sun(孙云飞). Chin. Phys. B, 2021, 30(10): 108502.
[7] Temperature-switching logic in MoS2 single transistors
Xiaozhang Chen(陈孝章), Lehua Gu(顾乐华), Lan Liu(刘岚), Huawei Chen(陈华威), Jingyu Li(栗敬俣), Chunsen Liu(刘春森), Peng Zhou(周鹏). Chin. Phys. B, 2020, 29(9): 097201.
[8] Temperature dependence of mode coupling effect in piezoelectric vibrator made of [001]c-poled Mn-doped 0.24PIN-0.46PMN-0.30PT ternary single crystals with high electromechanical coupling factor
Nai-Xing Huang(黄乃兴), En-Wei Sun(孙恩伟), Rui Zhang(张锐), Bin Yang(杨彬), Jian Liu(刘俭), Tian-Quan Lü(吕天全), Wen-Wu Cao(曹文武). Chin. Phys. B, 2020, 29(7): 075201.
[9] Noise temperature distribution of superconducting hot electron bolometer mixers
Kang-Min Zhou(周康敏), Wei Miao(缪巍), Yue Geng(耿悦), Yan Delorme, Wen Zhang(张文), Yuan Ren(任远), Kun Zhang(张坤), Sheng-Cai Shi(史生才). Chin. Phys. B, 2020, 29(5): 058505.
[10] Theoretical analytic model for RESURF AlGaN/GaN HEMTs
Hao Wu(吴浩), Bao-Xing Duan(段宝兴), Luo-Yun Yang(杨珞云), Yin-Tang Yang(杨银堂). Chin. Phys. B, 2019, 28(2): 027302.
[11] Anomalous temperature dependence of photoluminescence spectra from InAs/GaAs quantum dots grown by formation-dissolution-regrowth method
Guan-Qing Yang(杨冠卿), Shi-Zhu Zhang(张世著), Bo Xu(徐波), Yong-Hai Chen(陈涌海), Zhan-Guo Wang(王占国). Chin. Phys. B, 2017, 26(6): 068103.
[12] Extraction of temperature dependences of small-signal model parameters in SiGe HBT HICUM model
Ya-Bin Sun(孙亚宾), Jun Fu(付军), Yu-Dong Wang(王玉东), Wei Zhou(周卫), Wei Zhang(张伟), and Zhi-Hong Liu(刘志弘). Chin. Phys. B, 2016, 25(4): 048501.
[13] Breakdown mechanisms in AlGaN/GaN high electron mobility transistors with different GaN channel thickness values
Ma Xiao-Hua (马晓华), Zhang Ya-Man (张亚嫚), Wang Xin-Hua (王鑫华), Yuan Ting-Ting (袁婷婷), Pang Lei (庞磊), Chen Wei-Wei (陈伟伟), Liu Xin-Yu (刘新宇). Chin. Phys. B, 2015, 24(2): 027101.
[14] Transport mechanism of reverse surface leakage current in AlGaN/GaN high-electron mobility transistor with SiN passivation
Zheng Xue-Feng (郑雪峰), Fan Shuang (范爽), Chen Yong-He (陈永和), Kang Di (康迪), Zhang Jian-Kun (张建坤), Wang Chong (王冲), Mo Jiang-Hui (默江辉), Li Liang (李亮), Ma Xiao-Hua (马晓华), Zhang Jin-Cheng (张进成), Hao Yue (郝跃). Chin. Phys. B, 2015, 24(2): 027302.
[15] Effect of combined platinum and electron on the temperature dependence of forward voltage in fast recovery diode
Jia Yun-Peng (贾云鹏), Zhao Bao (赵豹), Yang Fei (杨霏), Wu Yu (吴郁), Zhou Xuan (周璇), Li Zhe (李哲), Tan Jian (谭健). Chin. Phys. B, 2015, 24(12): 126104.
No Suggested Reading articles found!