Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(8): 084205    DOI: 10.1088/1674-1056/23/8/084205
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

A new kind of superimposing morphology for enhancing the light scattering in thin film silicon solar cells:Combining random and periodic structure

Huang Zhen-Hua (黄振华)a b c, Zhang Jian-Jun (张建军)a b c, Ni Jian (倪牮)a b c, Wang Hao (王昊)a b c, Zhao Ying (赵颖)a b c
a Institute of Photo-electronics Thin Film Devices and Technique of Nankai University, Tianjin 300071, China;
b Key Laboratory of Photo-electronics Thin Film Devices and Technique of Tianjin, Tianjin 300071, China;
c Key Laboratory of Photo-electronic Information Science and Technology of Ministry of Education (Nankai University), Tianjin 300071, China
Abstract  In this article, a new type of superimposing morphology comprised of a periodic nanostructure and a random structure is proposed for the first time to enhance the light scattering in silicon-based thin film solar cells. According to the framework of the Reyleigh-Sommerfeld diffraction algorithm and the experimental results of random morphologies, we analyze the light-scattering properties of four superimposing morphologies and compare them with the individual morphologies in detail. The results indicate that the superimposing morphology can offer a better light trapping capacity, owing to the coexistence of the random scattering mechanism and the periodic scattering mechanism. Its scattering property will be dominated by the individual nanostructures whose geometrical features play the leading role.
Keywords:  light scattering      superimposing morphology      random      periodic  
Received:  21 September 2013      Revised:  01 February 2014      Accepted manuscript online: 
PACS:  42.79.-e (Optical elements, devices, and systems)  
  88.50.gj (Modeling, design)  
  88.40.jj (Silicon solar cells)  
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2011CBA00705, 2011CBA00706, and 2011CBA00707), the National Natural Science Foundation of China (Grant No. 61377031), the Natural Science Foundation of Tianjin, China (Grant No. 12JCQNJC01000), the Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant No. 20120031120044), and the Fundamental Research Funds for the Central Universities, China (Grant No. 65012371).
Corresponding Authors:  Zhao Ying     E-mail:  jjzhang@nankai.edu.cn

Cite this article: 

Huang Zhen-Hua (黄振华), Zhang Jian-Jun (张建军), Ni Jian (倪牮), Wang Hao (王昊), Zhao Ying (赵颖) A new kind of superimposing morphology for enhancing the light scattering in thin film silicon solar cells:Combining random and periodic structure 2014 Chin. Phys. B 23 084205

[1] Sai H, Jia H and Kondo M 2010 J. Appl. Phys. 108 044505
[2] Lin C C, Liu W L and Hsieh C Y 2011 J. Appl. Phys. 109 014508
[3] Steinhauser J, Fay S, Oliveira N, Vallat-Sauvain E and Ballif C 2006 Appl. Phys. Lett. 90 142107
[4] Chun B S, Wu H C, Abid M, Chu I C, Serrano-Guisan S, Shvets I V and Choi D S 2010 Appl. Phys. Lett. 97 082109
[5] Berginski M, Hupkes J, Gordijn A, Reetz W, Watjen T, Rech B and Wuttig M 2008 Sol. Energy Mater. Sol. Cells 92 1037
[6] Battaglia C, Hsu C M, Soderstrom K, Escarre J, Haug F J, Charriere M, Boccard M, Despeisse M, Alexander D T L, Cantoni M, Cui Y and Ballif C 2012 Nano. Lett. 6 2790
[7] Sai H, Fujiwara H, Kondo M and Kanamori Y 2008 Appl. Phys. Lett. 93 143501
[8] Zhu J, Hsu C M, Yu Z, Fan S and Cui Y 2010 Nano Lett. 10 1979
[9] Yu Z and Fan S 2011 Appl. Phys. Lett. 98 011106
[10] Battaglia C, Boccard M, Haug F J and Ballif C 2012 J. Appl. Phys. 112 094504
[11] Isabella O, Krc Janez and Zeman M 2010 Appl. Phys. Lett. 97 101106
[12] Battaglia C, Escarre J, Soderstrom K, Charriere M, Despeisse M, Haug F J and Ballif C 2011 Nat. Photon. 5 535
[13] Battkau K, Schulte M, Klein M, Beckers T, Carius R 2011 Thin Solid Films 519 6538
[14] Battaglia C, Soderstrom K, Escarre J, Haug F J, Domine D, Cuony P, Boccard M, Bugnon G, Denizot C, Despeisse M, Feltrin A and Ballif C 2010 Appl. Phys. Lett. 96 213504
[15] Domine D, Haug F J, Battaglia C and Ballif C 2010 J. Appl. Phys. 107 044504
[16] Harvey J E, Vernold C L, Krywonos A and Thomposon P L 1999 Appl. Opt. 38 6469
[17] Krc J, Zeman M, Smole F and Topic M 2002 J. Appl. Phys. 92 749
[18] Bittkau K, Bottler W, Ermes M, Smirnov V and Finger F 2012 J. Appl. Phys. 111 083101
[19] Ding K, Kirchartz T, Pieters B E, Ulbrich C, Ermes A M, Schicho S, Lambertz A, Carius R and Rau U 2011 Sol. Energy Mater. Sol. Cells 95 3318
[20] Soderstrom K, Haug F J, Escarre J, Cubero O and and Ballif C 2010 Appl. Phys. Lett. 96 213508
[1] Effective dynamics and quantum state engineering by periodic kicks
Zhi-Cheng Shi(施志成), Zhen Chen(陈阵), Jian-Hui Wang(王建辉), Yan Xia(夏岩), and X X Yi(衣学喜). Chin. Phys. B, 2023, 32(4): 044210.
[2] Floquet scattering through a parity-time symmetric oscillating potential
Xuzhen Cao(曹序桢), Zhaoxin Liang(梁兆新), and Ying Hu(胡颖). Chin. Phys. B, 2023, 32(3): 030302.
[3] Mobility edges generated by the non-Hermitian flatband lattice
Tong Liu(刘通) and Shujie Cheng(成书杰). Chin. Phys. B, 2023, 32(2): 027102.
[4] Direct measurement of an energy-dependent single-event-upset cross-section with time-of-flight method at CSNS
Biao Pei(裴标), Zhixin Tan(谭志新), Yongning He(贺永宁), Xiaolong Zhao(赵小龙), and Ruirui Fan(樊瑞睿). Chin. Phys. B, 2023, 32(2): 020705.
[5] A novel algorithm to analyze the dynamics of digital chaotic maps in finite-precision domain
Chunlei Fan(范春雷) and Qun Ding(丁群). Chin. Phys. B, 2023, 32(1): 010501.
[6] Imaging a periodic moving/state-changed object with Hadamard-based computational ghost imaging
Hui Guo(郭辉), Le Wang(王乐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2022, 31(8): 084201.
[7] THz wave generation by repeated and continuous frequency conversions from pump wave to high-order Stokes waves
Zhongyang Li(李忠洋), Qianze Yan(颜钤泽), Pengxiang Liu(刘鹏翔), Binzhe Jiao(焦彬哲), Gege Zhang(张格格), Zhiliang Chen(陈治良), Pibin Bing(邴丕彬), Sheng Yuan(袁胜), Kai Zhong(钟凯), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(7): 074209.
[8] Topological phase transition in cavity optomechanical system with periodical modulation
Zhi-Xu Zhang(张志旭), Lu Qi(祁鲁), Wen-Xue Cui(崔文学), Shou Zhang(张寿), and Hong-Fu Wang(王洪福). Chin. Phys. B, 2022, 31(7): 070301.
[9] Gap solitons of spin-orbit-coupled Bose-Einstein condensates in $\mathcal{PT}$ periodic potential
S Wang(王双), Y H Liu(刘元慧), and T F Xu(徐天赋). Chin. Phys. B, 2022, 31(7): 070306.
[10] Improving sound diffusion in a reverberation tank using a randomly fluctuating surface
Qi Li(李琪), Dingding Xie(谢丁丁), Rui Tang(唐锐), Dajing Shang(尚大晶), and Zhichao Lv(吕志超). Chin. Phys. B, 2022, 31(6): 064302.
[11] A nonlocal Boussinesq equation: Multiple-soliton solutions and symmetry analysis
Xi-zhong Liu(刘希忠) and Jun Yu(俞军). Chin. Phys. B, 2022, 31(5): 050201.
[12] Dynamics and intermittent stochastic stabilization of a rumor spreading model with guidance mechanism in heterogeneous network
Xiaojing Zhong(钟晓静), Yukun Yang(杨宇琨), Runqing Miao(苗润青), Yuqing Peng(彭雨晴), and Guiyun Liu(刘贵云). Chin. Phys. B, 2022, 31(4): 040205.
[13] A flexible ultra-broadband metamaterial absorber working on whole K-bands with polarization-insensitive and wide-angle stability
Tao Wang(汪涛), He-He He(何贺贺), Meng-Di Ding(丁梦迪), Jian-Bo Mao(毛剑波), Ren Sun(孙韧), and Lei Sheng(盛磊). Chin. Phys. B, 2022, 31(3): 037804.
[14] Inferring interactions of time-delayed dynamic networks by random state variable resetting
Changbao Deng(邓长宝), Weinuo Jiang(蒋未诺), and Shihong Wang(王世红). Chin. Phys. B, 2022, 31(3): 030502.
[15] Bifurcation and dynamics in double-delayed Chua circuits with periodic perturbation
Wenjie Yang(杨文杰). Chin. Phys. B, 2022, 31(2): 020201.
No Suggested Reading articles found!