Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(7): 077301    DOI: 10.1088/1674-1056/23/7/077301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Lattice structures and electronic properties of CIGS/CdS interface:First-principles calculations

Tang Fu-Ling (汤富领)a b, Liu Ran (刘冉)a b, Xue Hong-Tao (薛红涛)a, Lu Wen-Jiang (路文江)a, Feng Yu-Dong (冯煜东)b, Rui Zhi-Yuan (芮执元)a, Huang Min (黄敏)c
a State Key Laboratory of Gansu Advanced Non-ferrous Metal Materials, Department of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China;
b Science and Technology on Surface Engineering Laboratory, Lanzhou Institute of Physics, Lanzhou 730000, China;
c State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
Abstract  Using first-principles calculations within density functional theory, we study the atomic structures and electronic properties of the perfect and defective (2VCu+InCu) CuInGaSe2/CdS interfaces theoretically, especially the interface states. We find that the local lattice structure of (2VCu+InCu) interface is somewhat disorganized. By analyzing the local density of states projected on several atomic layers of the two interfaces models, we find that for the (2VCu+InCu) interface the interface states near the Fermi level in CuInGaSe2 and CdS band gap regions are mainly composed of interfacial Se-4p, Cu-3d and S-3p orbitals, while for the perfect interface there are no clear interface states in the CuInGaSe2 region but only some interface states which are mainly composed of S-3p orbitals in the valance band of CdS region.
Keywords:  first-principles calculation      CuInGaSe2/CdS      density of states      interface states  
Received:  02 December 2013      Revised:  31 December 2013      Accepted manuscript online: 
PACS:  73.20.-r (Electron states at surfaces and interfaces)  
  02.60.Cb (Numerical simulation; solution of equations)  
  73.20.At (Surface states, band structure, electron density of states)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11364025 and 11164014) and the Gansu Science and Technology Pillar Program, China (Grant No. 1204GKCA057).
Corresponding Authors:  Tang Fu-Ling     E-mail:  tfl03@mails.tsinghua.edu.cn
About author:  73.20.-r; 02.60.Cb; 73.20.At

Cite this article: 

Tang Fu-Ling (汤富领), Liu Ran (刘冉), Xue Hong-Tao (薛红涛), Lu Wen-Jiang (路文江), Feng Yu-Dong (冯煜东), Rui Zhi-Yuan (芮执元), Huang Min (黄敏) Lattice structures and electronic properties of CIGS/CdS interface:First-principles calculations 2014 Chin. Phys. B 23 077301

[1] Turcu M and Rau U 2003 J. Phys. Chem. Solids 64 1591
[2] Jackson P, Hariskos D, Lotter E, Paetel S, Wuerz R, Menner R, Wischmann W and Powalla M 2011 Prog. Photovoltaics Res. Appl. 19 894
[3] Shi S Q, Tanaka S and Kohyama M 2006 Model. Simul. Mater. Sc. 14 S21
[4] Shi S Q, Tanaka S and Kohyama M 2007 Phys. Rev. B 76 075431
[5] Wang W C, Xiong K, Lee G, Min H, Wallace R M and Cho K 2010 Appl. Surf. Sci. 256 6569
[6] Lu H, Shen D H, Xue Q K, Polak M and Froumin N 2001 Chin. Phys. Lett. 18 94
[7] Lei H, Liu C H, Lin B X and Fu Z X 2005 Chin. Phys. Lett. 22 185
[8] Li M, Zhang J Y, Zhang Y and Wang T M 2012 Chin. Phys. B 21 067302
[9] Cojocaru-Miredin O, Choi P, Wuerz R and Raabe D 2011 Appl. Phys. Lett. 98 103504
[10] Cojocaru-Mirédin O, Choi P, Wuerz R and Raabe D 2012 Appl. Phys. Lett. 101 181605
[11] Liao D and Rockett A 2003 J. Appl. Phys. 93 9380
[12] Bao W and Ichimura M 2012 Int. J. Photoenergy 2012 619812
[13] Minemoto T, Matsui T, Takakura H, Hamakawa Y, Negami T, Hashimoto Y, Uenoyama T and Kitagawa M 2001 Sol. Energ. Mater. Sol. C 67 83
[14] Hinuma Y, Oba F, Kumagai Y and Tanaka I 2013 Phys. Rev. B 88 035305
[15] Tang Y H, Zhang H, Cui L X, Ouyang C Y, Shi S Q, Tang W H, Li H, Lee J-S and Chen L Q 2010 Phys. Rev. B 82 125104
[16] Shi S Q, Tanaka S and Kohyama M 2006 Mater. Trans. 47 2696
[17] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[18] Shi S Q, Tanaka S and Kohyama M 2007 J. Am. Ceram. Soc 90 2429
[19] Heyd J, Scuseria G and Ernzerhof M 2003 J. Chem. Phys. 118 8207
[20] Wan F C, Tang F L, Zhu Z X, Xue H T, Lua W J, Feng Y D and Rui Z Y 2013 Mater. Sci. Semicon. Process. 16 1422
[21] Zhu Z X, Tang F L, Lu W J, Feng Y D, Wang Z M and Wang Y 2012 Physica B 407 4814
[22] Wang W H, Zhao G Z and Liang X X 2013 Chin. Phys. B 22 120205
[23] Wu H P, Deng K M, Tan W S, Xiao C Y, Hu F L and Li Q X 2009 Chin. Phys. B 18 5008
[24] Liechtenstein A, Anisimov V and Zaanen J 1995 Phys. Rev. B 52 R5467
[25] Lany S and Zunger A 2005 Phys. Rev. B 72 035215
[26] Vidal J, Botti S, Olsson P, Guillemoles J F and Reining L 2010 Phys. Rev. Lett. 104 056401
[27] Szabová L, Camellone M F, Huang M, Matolín V and Fabris S 2010 J. Chem. Phys. 133 234705
[28] Müller J, Nowoczin J and Schmitt H 2006 Thin Solid Films 496 364
[29] Chen D S, Yang J, Xu F, Zhou P H, Du H W, Shi J W, Yu Z S, Zhang Y H, Bartholomeus B and Ma Z Q 2013 Chin. Phys. B 22 018801
[30] Lazewski J, Neumann H, Parlinski K, Lippold G and Stanbery B 2003 Phys. Rev. B 68 144108
[31] Parkes J, Tomlinson R and Hampshire M 1973 J. Appl. Crystallogr. 6 414
[32] Spiess H W, Haeberlen U, Brandt G, Räuber A and Schneider J 1974 Phys. Status Solidi B 62 183
[33] Knight K 1992 Mater. Res. Bull. 27 161
[34] Lin Y M, Ji Z H and Zeng X H 2008 Journal of Yangzhou University 11 32 (in Chinese)
[35] Jiang F and Feng J 2006 Appl. Phys. Lett. 89 221920
[36] Belhadj M, Tadjer A, Abbar B, Bousahla Z, Bouhafs B and Aourag H 2004 Phys. Status Solidi B 241 2516
[37] Ni L H, Liu Y and Song C L 2008 Rare Metal Mater. Eng. 37 623 (in Chinese)
[38] Ekuma E C, Bagayoko D, Zhao G L, Franklin L and Wang J T 2010 AJP 3 119
[39] Pardo-Yissar V, Katz E, Wasserman J and Willner I 2003 J. Am. Chem. Soc. 125 622
[40] Rodríguez J A, Quiroga L, Camacho A and Baquero R 1996 Braz. J. Phys. 26 274
[41] Rodríguez J A, Quiroga L, Camacho A and Baquero R 1999 Phys. Rev. B 59 1555
[42] Siebentritt S, Papathanasiou N, Albert J and Lux-Steiner M C 2006 Appl. Phys. Lett. 88 151919
[43] Zhou Z, Zhao K, Wang Y M and Huang F Q 2011 J. Inorg. Mater. 26 113
[44] Rockett A 2012 Prog. Photovoltaics Res. Appl. 20 575
[45] Hinuma Y, Oba F, Kumagai Y and Tanaka I 2012 Phys. Rev. B 86 245433
[46] Gloeckler M and Sites J 2005 J. Phys. Chem. Solids 66 1891
[47] Birkmire R W 2001 Sol. Energ. Mater. Sol. C 65 17
[48] Shafarman W N, Klenk R and McCandless B E 1996 J. Appl. Phys. 79 7324
[49] Repins I, Contreras M A, Egaas B, DeHart C, Scharf J, Perkins C L, To B and Noufi R 2008 Prog. Photovoltaics Res. Appl. 16 235
[50] Oikkonen L, Ganchenkova M G, Seitsonen A P and Nieminen R 2011 J. Phys.: Condens. Matter 23 422202
[51] Domain C, Laribi S, Taunier S and Guillemoles J 2003 J. Phys. Chem. Solids 64 1657
[52] Wen L S 1991 The Physical Foundation of the Solid Material Interface (1st edn.) (Beijing: Science Press) p. 128 (in Chinese)
[1] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Vortex bound states influenced by the Fermi surface anisotropy
Delong Fang(方德龙). Chin. Phys. B, 2023, 32(3): 037403.
[4] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[5] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[6] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[7] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[8] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[9] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[10] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[11] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[12] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[13] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
[14] Bias-induced reconstruction of hybrid interface states in magnetic molecular junctions
Ling-Mei Zhang(张令梅), Yuan-Yuan Miao(苗圆圆), Zhi-Peng Cao(曹智鹏), Shuai Qiu(邱帅), Guang-Ping Zhang(张广平), Jun-Feng Ren(任俊峰), Chuan-Kui Wang(王传奎), and Gui-Chao Hu(胡贵超). Chin. Phys. B, 2022, 31(5): 057303.
[15] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
No Suggested Reading articles found!