Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(7): 074702    DOI: 10.1088/1674-1056/23/7/074702
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Molecular dynamics simulations of the nano-droplet impact process on hydrophobic surfaces

Hu Hai-Bao (胡海豹), Chen Li-Bin (陈立斌), Bao Lu-Yao (鲍路瑶), Huang Su-He (黄苏和)
School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China
Abstract  Large-scale molecular dynamics simulations are used to study the dynamic processes of a nano-droplet impacting on hydrophobic surfaces at a microscopic level. Both the impact phenomena and the velocity distributions are recorded and analyzed. According to the simulation results, similar phenomena are obtained to those in macro-experiments. Impact velocity affects the spread process to a greater degree than at a level of contact angle when the velocity is relatively high. The velocity distribution along the X axis during spread is wave-like, either W- or M-shaped, and the velocity at each point is oscillatory; while the edges have the highest spread velocity and there are crests in the distribution curve which shift toward the edges over time. The distribution along the Y axis is <- or >-shaped, and the segments above the middle have the lowest decrease rate in the spreading process and the highest increase rate in the retraction process.
Keywords:  nano-droplet      hydrophobic surface      molecular dynamics      velocity distribution  
Received:  01 August 2013      Revised:  22 November 2013      Accepted manuscript online: 
PACS:  47.55.dr (Interactions with surfaces)  
  47.61.-k (Micro- and nano- scale flow phenomena)  
  47.11.-j (Computational methods in fluid dynamics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51109178) and the Science and Technology Innovation Foundation of Northwestern Polytechnical University, China (Grant No. JC20120218).
Corresponding Authors:  Hu Hai-Bao     E-mail:  huhaibao@nwpu.edu.cn
About author:  47.55.dr; 47.61.-k; 47.11.-j

Cite this article: 

Hu Hai-Bao (胡海豹), Chen Li-Bin (陈立斌), Bao Lu-Yao (鲍路瑶), Huang Su-He (黄苏和) Molecular dynamics simulations of the nano-droplet impact process on hydrophobic surfaces 2014 Chin. Phys. B 23 074702

[1] Praven K C and Finnerty C M 2006 J. Power Sources 160 490
[2] Jiao K and Li X G 2011 Prog. Energy Combust. Sci. 37 221
[3] Merlen A and Brunet P 2009 J. Bionic Eng. 6 330
[4] Brown P S, Berson A and Talbot E L 2011 Langmuir 27 13897
[5] Chen L Q and Li Z G 2010 Phys. Rev. E 82 016308
[6] Hu H B, Chen L B, Huang S H and Song B W 2013 Sci. China Phys. Mech. 56 960
[7] Li X Y, Ma X H and Zhong L 2010 Langmuir 26 4831
[8] Gu Y G and Li D Q 2000 Colloid. Surf. A 163 239
[9] Anderson D M, Forest M G and Superfine R 2001 Sian. J. Appl. Math. 61 1502
[10] Sun Z H and Han R J 2008 Chin. Phys. B 17 3185
[11] Bertrand E, Blake T D, Ledauphin V, Ogonowski G and Coninck J D 2007 Langmuir 23 3774
[12] David R H, Gary S G, Edmund B W Ⅲ 2005 Phys. Rev. Lett. 95 107801
[13] Blake T D and Coninck J D 2002 Adv. Colloid. Interface. 96 21
[14] Yan Y Y and Ji C Y 2008 J. Bionic Eng. 5 271
[15] Cao B Y, Chen M and Guo Z Y 2006 Acta. Phys. Sin. 55 5305 (in Chinese)
[16] Coninck J D and Blake T D 2008 Annu. Rev. Mater. Res. 38 1
[17] Zhang J, Liu C, Shu Y H and Fan J 2012 Appl. Surf. Sci. 261 690
[1] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[2] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[3] In situ temperature measurement of vapor based on atomic speed selection
Lu Yu(于露), Li Cao(曹俐), Ziqian Yue(岳子骞), Lin Li(李林), and Yueyang Zhai(翟跃阳). Chin. Phys. B, 2023, 32(2): 020602.
[4] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[5] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[6] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[7] Spatial correlation of irreversible displacement in oscillatory-sheared metallic glasses
Shiheng Cui(崔世恒), Huashan Liu(刘华山), and Hailong Peng(彭海龙). Chin. Phys. B, 2022, 31(8): 086108.
[8] Effect of void size and Mg contents on plastic deformation behaviors of Al-Mg alloy with pre-existing void: Molecular dynamics study
Ning Wei(魏宁), Ai-Qiang Shi(史爱强), Zhi-Hui Li(李志辉), Bing-Xian Ou(区炳显), Si-Han Zhao(赵思涵), and Jun-Hua Zhao(赵军华). Chin. Phys. B, 2022, 31(6): 066203.
[9] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[10] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[11] Impact of thermostat on interfacial thermal conductance prediction from non-equilibrium molecular dynamics simulations
Song Hu(胡松), C Y Zhao(赵长颖), and Xiaokun Gu(顾骁坤). Chin. Phys. B, 2022, 31(5): 056301.
[12] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[13] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[14] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[15] Effect of the number of defect particles on the structure and dispersion relation of a two-dimensional dust lattice system
Rangyue Zhang(张壤月), Guannan Shi(史冠男), Hanyu Tang(唐瀚宇), Yang Liu(刘阳), Yanhong Liu(刘艳红), and Feng Huang(黄峰). Chin. Phys. B, 2022, 31(3): 035204.
No Suggested Reading articles found!