Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(7): 074206    DOI: 10.1088/1674-1056/23/7/074206
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

All optical method for measuring the carrier envelope phase from half-cycle cutoffs

Li Qian-Guang (李钱光)a b, Chen Huan (陈欢)a, Zhang Xiu (张秀)a, Yi Xu-Nong (易煦农)a
a School of Physics and Electronic-information Engineering, Hubei Engineering University, Xiaogan 432000, China;
b Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, Hubei Engineering University, Xiaogan 432000, China
Abstract  An all optical method is demonstrated for measuring the carrier-envelope phase (CEP) of few-cycle laser pulses. It is found that, in the few-cycle regime, the high harmonic spectrum generated from asymmetric molecules shows several half-cycle cutoffs that change their positions as the CEP varies. Such half-cycle cutoffs represent the fingerprint of different quantum trajectories and the waveform of the driving pulse. In this case, the CEP can be accurately measured from the half-cycle cutoffs.
Keywords:  high harmonic generation      carrier-envelope phase      measurement  
Received:  08 September 2013      Revised:  28 November 2013      Accepted manuscript online: 
PACS:  42.65.Ky (Frequency conversion; harmonic generation, including higher-order harmonic generation)  
  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
  42.65.-k (Nonlinear optics)  
Fund: Project supported by the Key Foundation of the Ministry of Education of China (Grant No. 211117) and the Foundation of Hubei Co-innovation Center for Utilization of Biomass Waste, China (Grant No. XTCX004).
Corresponding Authors:  Li Qian-Guang     E-mail:  liqianguang@126.com
About author:  42.65.Ky; 42.65.Re; 42.65.-k

Cite this article: 

Li Qian-Guang (李钱光), Chen Huan (陈欢), Zhang Xiu (张秀), Yi Xu-Nong (易煦农) All optical method for measuring the carrier envelope phase from half-cycle cutoffs 2014 Chin. Phys. B 23 074206

[1] Baltuska A, Udem Th, Uiberacker M, Hentschel M, Goulielmakis E, Gohle Ch, Holzwarth R, Yakovlev V S, Scrinzi A, Hänsch T W and Krausz F 2003 Nature 421 611
[2] Li C, Wang D, Song L W, Liu J, Liu P, Xu C H, Leng Y X, Li R X, and Xu Z Z 2011 Opt. Express 19 6783
[3] Zhu J F, Wang P, Han H N, Teng Hao, and Wei Z Y 2008 Science in China G: Physics, Mechanics and Astronomy 51 507
[4] Cao W, Lu P X, Lan P F, Wang X L and Li Y H 2007 Phys. Rev. A 75 063423
[5] Milošević D B, Paulus G G, Bauer D and Becker W 2006 J. Phys. B: At. Mol. Opt. Phys. 39 R203
[6] Peng L Y, Tan F, Gong Q H, Pronin E A and Starace A F 2009 Phys. Rev. A 80 013407
[7] Zhang X M, Zhang J T, Gong Q H and Xu Z Z 2009 Chin. Phys. B 18 1014
[8] Liu X, Rottke H, Eremina E, Sandner W, Goulielmakis E, Keeffe K, Lezius M, Krausz F, Lindner F, Schatzel M, Paulus G and Walther H 2004 Phys. Rev. Lett. 93 263001
[9] Zhou Y M, Huang C, Liao Q and Lu P X 2012 Phys. Rev. Lett. 109 053004
[10] Lan P F, Lu P X, Cao W and Wang X L 2005 Phys. Rev. E 72 066501
[11] Mackenroth, Piazza A D and Keitel C H 2010 Phys. Rev. Lett. 105 063903
[12] Wen M, Jin L L, Wang H Y, Wang Z, Shen B F, Lu Y R, Chen J E and Yan X Q 2012 Phys. Rev. E 85 035401(R)
[13] Zhai Z, Peng D, Zhao X, Guo F M, Yang Y J, Fu P M, Chen J, Yan Z C and Wang B B 2012 Phys. Rev. A 86 043432
[14] Lan P F, Lu P X and Cao W 2006 Phys. Plasmas 13 013106
[15] Holzwarth R, Udem Th, Hänsch T W, Knight J C, Wadsworth W J and Russell P St J 2000 Phys. Rev. Lett. 85 2264
[16] Jones D J, Diddams S A, Ranka J K, Stentz A, Windeler R S, Hall J L and Cundiff S T 2000 Science 288 635
[17] Zhang C M, Wang J L, Wei P F, Song L W, Li C, Kim C J and Leng Y X 2009 Chin. Phys. B 18 1469
[18] Liao Q, Lu P X, Zhang Q B, Hong W Y and Yang Z Y 2008 J. Phys. B: At. Mol. Opt. Phys. 41 125601
[19] Wittmann T, Horvath B, Helml W, Schäzel M G, Gu X, Cavalieri A L, Paulus G G and Kienberger R 2009 Nature Phys. 5 357
[20] Liu Z T, Yuan K J, Shu C C, Hu W H and Cong H L 2010 J. Phys. B: At. Mol. Opt. Phys. 43 055601
[21] Rathje T, Johnson N G, Moller M, Submann F, Adolph D, Kubel M, Kienberger R, Kling M F, Paulus G G and Sayler A M 2012 J. Phys. B: At. Mol. Opt. Phys. 45 074003
[22] Xin G G, Ye D F and Liu J 2010 Phys. Rev. A 82 063423
[23] Hong W Y, Lu P X, Lan P F, Yang Z Y, Li Y H and Liao Q 2008 Phys. Rev. A 77 033410
[24] Nisoli M, Sansone G, Stagira S, De Silvestri S, Vozzi C, Pascolini M, Poletto L, Villoresi P and Tondello G 2003 Phys. Rev. Lett. 91 213905
[25] Lan P F, Lu P X, Cao W, Li Y H and Wang X L 2007 Phys. Rev. A 76 011402
[26] Zeng Z N, Cheng Y, Song X H, Li R X and Xu Z Z 2007 Phys. Rev. Lett. 98 203901
[27] Lan P F, Lu P X, Li F, Li Y H and Yang Z Y 2008 Opt. Express 16 5868
[28] Ge Y C and He H P 2010 Chin. Phys. B 19 103302
[29] Lan P F, Lu P X, Cao W, Li Y H and Wang X L 2007 Phys. Rev. A 76 051801
[30] Sansone G, Vozzi C, Stagira S, Pascolini M, Poletto L, Villoresi P, Tondello G, De Silvestri D and Nisoli 2004 Phys. Rev. Lett. 92 113904
[31] Zhang Q B, Lu P X, Lan P F, Hong W Y and Yang Z Y 2008 Opt. Express 16 9795
[32] Hong W Y, Lu P X, Li Q G and Zhang Q B 2009 Opt. Lett. 34 2102
[33] Haworth C A, Chipperfield L E, Robinson J S, Knight P L, Marangos J P and Tisch J W G 2007 Nature Physics 3 52
[34] Lan P F, Lu P X, Cao W, Li Y H and Wang X L 2007 Phys. Rev. A 76 021801
[35] Lein M, Hay N, Velotta R, Marangos J P and Knight P L 2002 Phys. Rev. Lett. 88 183903
[36] Zhu X S, Zhang Q B, Hong W Y, Lan P F and Lu P X 2011 Opt. Express 19 436
[37] Kamta G L, Bandrauk A D and Corkum P B 2005 J. Phys. B: At. Mol. Opt. Phys. 38 L339
[38] Lan P F, Lu P X, Cao W, Wang X L and Hong W L 2007 Opt. Lett. 32 1186
[39] Zhao Z Y, Han Y C, Huang Y and Cong S L 2013 J. Chem. Phys. 139 044305
[40] Wu J and Zeng H P 2010 Phys. Rev. A 81 053401
[41] Lan P F, Lu P X, Cao W, Wang X L and Yang G 2006 Phys. Rev. A 74 063411
[42] Hong W Y, Li Y H, Lu P X, Lan P F, Zhang Q B and Wang X B 2008 J. Opt. Soc. Am. B 25 1684
[43] Javanainen J, Eberly J H, and Su Q C 1988 Phys. Rev. A 38 3430
[44] Lan P F, Lu P X, Cao W, Wang X L and Yang G 2006 Phys. Rev. A 74 063411
[45] Ben-Itzhak I, Gertner I, Heber O and Rosner B 1993 Phys. Rev. Lett. 71 1347
[46] Lan P F, Lu P X, Li F, Li Q G, Hong W Y, Zhang Q B, Yang Z Y and Wang X B 2008 Opt. Express 16 17542
[47] Feit M D, Fleck Jr J A and Steiger A 1982 J. Comput. Phys. 47 412
[48] Zhang Q, Lan P, Hong W, Liao Q, Yang Z and Lu P 2009 Acta Phys. Sin. 58 4908 (in Chinese)
[49] Corkum P B 1993 Phys. Rev. Lett. 71 1994
[50] Wei P F, Miao J, Zeng Z N, Li C, Ge X C, Li R X and Xu Z Z 2013 Phys. Rev. Lett. 110 233903
[51] Levesque J, Zeidler D, Marangos J P, Corkum P B and Villeneuve D M 2007 Phys. Rev. Lett. 98 183903
[52] Shiner A D, Trallero-Herrero C, Kajumba N, Bandulet H C, Comtois D, Légaré F, Giguère M, Kieffer J C, Corkum P B and Villeneuve D M 2009 Phys. Rev. Lett. 103 073902
[1] Precision measurement and suppression of low-frequency noise in a current source with double-resonance alignment magnetometers
Jintao Zheng(郑锦韬), Yang Zhang(张洋), Zaiyang Yu(鱼在洋), Zhiqiang Xiong(熊志强), Hui Luo(罗晖), and Zhiguo Wang(汪之国). Chin. Phys. B, 2023, 32(4): 040601.
[2] Application of the body of revolution finite-element method in a re-entrant cavity for fast and accurate dielectric parameter measurements
Tianqi Feng(冯天琦), Chengyong Yu(余承勇), En Li(李恩), and Yu Shi(石玉). Chin. Phys. B, 2023, 32(3): 030101.
[3] Security of the traditional quantum key distribution protocolswith finite-key lengths
Bao Feng(冯宝), Hai-Dong Huang(黄海东), Yu-Xiang Bian(卞宇翔), Wei Jia(贾玮), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2023, 32(3): 030307.
[4] Quantitative measurement of the charge carrier concentration using dielectric force microscopy
Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅). Chin. Phys. B, 2023, 32(3): 037202.
[5] In situ temperature measurement of vapor based on atomic speed selection
Lu Yu(于露), Li Cao(曹俐), Ziqian Yue(岳子骞), Lin Li(李林), and Yueyang Zhai(翟跃阳). Chin. Phys. B, 2023, 32(2): 020602.
[6] Improving the teleportation of quantum Fisher information under non-Markovian environment
Yan-Ling Li(李艳玲), Yi-Bo Zeng(曾艺博), Lin Yao(姚林), and Xing Xiao(肖兴). Chin. Phys. B, 2023, 32(1): 010303.
[7] Laboratory demonstration of geopotential measurement using transportable optical clocks
Dao-Xin Liu(刘道信), Jian Cao(曹健), Jin-Bo Yuan(袁金波), Kai-Feng Cui(崔凯枫), Yi Yuan(袁易),Ping Zhang(张平), Si-Jia Chao(晁思嘉), Hua-Lin Shu(舒华林), and Xue-Ren Huang(黄学人). Chin. Phys. B, 2023, 32(1): 010601.
[8] Improvement of a continuous-variable measurement-device-independent quantum key distribution system via quantum scissors
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), Zhe-Kun Zhang(张哲坤), Jin Qi(齐锦), and Chen He(贺晨). Chin. Phys. B, 2022, 31(9): 090304.
[9] New designed helical resonator to improve measurement accuracy of magic radio frequency
Tian Guo(郭天), Peiliang Liu(刘培亮), and Chaohong Lee(李朝红). Chin. Phys. B, 2022, 31(9): 093201.
[10] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[11] Optical fiber FBG linear sensing systems for the on-line monitoring of airborne high temperature air duct leakage
Qinyu Wang(王沁宇), Xinglin Tong(童杏林), Cui Zhang(张翠), Chengwei Deng(邓承伟), Siyu Xu(许思宇), and Jingchuang Wei(魏敬闯). Chin. Phys. B, 2022, 31(8): 084204.
[12] Quantum speed limit of the double quantum dot in pure dephasing environment under measurement
Zhenyu Lin(林振宇), Tian Liu(刘天), Zongliang Li(李宗良), Yanhui Zhang(张延惠), and Kang Lan(蓝康). Chin. Phys. B, 2022, 31(7): 070307.
[13] Precise determination of characteristic laser frequencies by an Er-doped fiber optical frequency comb
Shiying Cao(曹士英), Yi Han(韩羿), Yongjin Ding(丁永今), Baike Lin(林百科), and Zhanjun Fang(方占军). Chin. Phys. B, 2022, 31(7): 074207.
[14] Improving sound diffusion in a reverberation tank using a randomly fluctuating surface
Qi Li(李琪), Dingding Xie(谢丁丁), Rui Tang(唐锐), Dajing Shang(尚大晶), and Zhichao Lv(吕志超). Chin. Phys. B, 2022, 31(6): 064302.
[15] Generation of stable and tunable optical frequency linked to a radio frequency by use of a high finesse cavity and its application in absorption spectroscopy
Yueting Zhou(周月婷), Gang Zhao(赵刚), Jianxin Liu(刘建鑫), Xiaojuan Yan(闫晓娟), Zhixin Li(李志新), Weiguang Ma(马维光), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(6): 064206.
No Suggested Reading articles found!