Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(6): 064205    DOI: 10.1088/1674-1056/23/6/064205
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Multi-wavelength measurements of aerosol optical absorption coefficients using a photoacoustic spectrometer

Liu Qiang (刘强)a b, Huang Hong-Hua (黄宏华)b, Wang Yao (王尧)c, Wang Gui-Shi (王贵师)b d, Cao Zhen-Song (曹振松)b, Liu Kun (刘锟)b d, Chen Wei-Dong (陈卫东)e, Gao Xiao-Ming (高晓明)b d
a Department of Optics & Optical Engineering, University of Science and Technology of China, Hefei 230026, China;
b Key Laboratory of Atmospheric Composition and Optical Radiation, Chinese Academy of Sciences, Hefei 230031, China;
c Institute for Environmental Reference Materials, Ministry of Environmental Protection, Beijing 100029, China;
d Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics & Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China;
e Laboratoire de Physicochimie del'Atmosphére, Université du Littoral Côte d'Opale, 189A, Av, Maurice Schumann, 59140 Dunkerque, France
Abstract  The atmospheric aerosol absorption capacity is a critical parameter determining its direct and indirect effects on climate. Accurate measurement is highly desired for the study of the radiative budget of the Earth. A multi-wavelength (405 nm, 532 nm, 780 nm) aerosol absorption meter based on photoacoustic spectroscopy (PAS) invovling a single cylindrical acoustic resonator is developed for measuring the aerosol optical absorption coefficients (OACs). A sensitivity of 1.3 Mm-1 (at 532 nm) is demonstrated. The aerosol absorption meter is successfully tested through measuring the OACs of atmospheric nigrosin and ambient aerosols in the suburbs of Hefei city. The absorption cross section and absorption Ångström exponent (AAE) for ambient aerosol are determined for characterizing the component of the ambient aerosol.
Keywords:  photoacoustic spectrometer      atmospheric aerosols      absorption coefficient      absorption Ångström exponent  
Received:  19 August 2013      Revised:  27 November 2013      Accepted manuscript online: 
PACS:  42.62.Fi (Laser spectroscopy)  
  42.68.Jg (Effects of aerosols?)  
  42.25.Bs (Wave propagation, transmission and absorption)  
Fund: Project supported by the Open Research Fund of Key Laboratory of Atmospheric Composition and Optical Radiation, Chinese Academy of Sciences, and the National Natural Science Foundation of China (Grant Nos. 41175036 and 41205120).
Corresponding Authors:  Gao Xiao-Ming     E-mail:  xmgao@aiofm.ac.cn

Cite this article: 

Liu Qiang (刘强), Huang Hong-Hua (黄宏华), Wang Yao (王尧), Wang Gui-Shi (王贵师), Cao Zhen-Song (曹振松), Liu Kun (刘锟), Chen Wei-Dong (陈卫东), Gao Xiao-Ming (高晓明) Multi-wavelength measurements of aerosol optical absorption coefficients using a photoacoustic spectrometer 2014 Chin. Phys. B 23 064205

[1] Schulz M, Textor C, Kinne S, Balkanski Y, Bauer S, Berntsen T, Berglen T, Boucher O, Dentener F, Guibert S, Isaksen I, Iversen T, Koch D, Kirkevåg A, Liu X, Montanaro V, Myhre G, Penner J, Pitari G, Reddy S, Seland Ø, Stier P and Takemura 2006 Atmos. Chem. Phys. 6 5225
[2] Wang H H and Sun X M 2012 Chin. Phys. B 21 054204
[3] Han Y, Wang T J, Rao R Z and Wang Y J 2008 Acta Phys. Sin. 57 7396 (in Chinese)
[4] Stier P, Seinfeld J H, Kinne S and Boucher O 2007 Atmos. Chem. Phys. 7 5237
[5] Si F Q, Liu J G, Xie P H, Zhang Y J, Liu W Q, Hiroaki K, Liu C, Nofel L and Nobuo T 2005 Chin. Phys. 14 2360
[6] Lack D A, Tie X X, Bofinger N D, Wiegand A N and Madronich S 2004 J. Geophys. Res. 109 D03203
[7] Weingartner E, Saathoff H, Schnaiter M, Streit N, Bitnar B and Baltensperger U 2003 J. Aerosol Sci. 34 1445
[8] Petzold A, Busen R, Schröder F P, Baumann R, Kuhn M, Ström J, Hagen D E, Whitefield P D, Baumgardner D, Arnold F, Borrmann S and Schumann U 1997 J. Geophys. Res. 102 D25
[9] Arnott W P, Hamasha K, Moosmüller H, Sheridan P J and Ogren J A 2005 Aerosol Sci. Technol. 39 17
[10] Vander W R, Ticich T M and Stephns A B 1998 Appl. Phys. B 67 115
[11] Vander W R and Choi M Y 1999 Carbon 37 231
[12] Smith J D and Atkinson D B 2001 Analyst. 126 1216
[13] Varma R, Moosmüller H and Arnott W P 2003 Opt. Lett. 28 1007
[14] Tibor Ajtai, Ágnes Filtp, Noémi Utry, Martin Schnaiter, Claudia Linke, Zoltán Bozóki, Gábor Szabó and Thomas Leisner 2011 J. Arosol Sci. 42 859
[15] Moosmüller H, Chakrabarty R K and Arnott W P 2009 J. Quant. Spectrosc. Radiat. Transfer 110 844
[16] Bruce C W and Pinnick R G 1977 Appl. Opt. 16 1762
[17] Terhune R W and Anderson J E 1977 Opt. Lett. 1 70
[18] Beck H A, Niessner R and Haisch C 2003 Anal. Bional. Chem. 375 1136
[19] Arnott W P, Moosmüller H, Rogers C F, Jin T and Bruch R 1999 Atmos. Environ. 33 2845
[20] Lewis K, Arnott W P, Moosmüller H and Wold C E 2008 J. Geophs. Res. 113 D16203
[21] Gyawali M, Arnott W P, Zaveri R A, Song C, Moosmüller H, Liu L, Mishchenko M I, Chen L W A, Green M C, Watson J G and Chow J C 2012 Atmos. Chem. Phys. 12 2587
[22] Arnott W P, Zielinska B, Rogers C F, Sagebiel J, Park K, Chow J, Moosmüller H, Watson J G, Kelly K, Wanger D, Sarofim A, Lighty J and Palmer G 2005 Environ. Sci. Technol. 39 5398
[23] Tibor Ajtai, Ágnes Filtp, Martin Schnaiter, Claudia Linke, Marlen Vragel, Zoltán Bozóki, Gábor Szabó and Thomas Leisner 2010 J. Arosol Sci. 41 1020
[24] Tibor Ajtai, Ágnes Filtp, Gabriella Kecskeméti, Béla Hopp, Zoltán Bozóki and Gábor Szabó 2010 Appl. Phys. A 103 1165
[25] Liu Q, Niu M S, Wang G S, Cao Z S, Liu K, Chen W D and Gao X M 2013 Spectrosc. Spect. Anal. 33 1729 (in Chinese)
[26] Arnott W P, Moosmüller H and Walker J W 2000 Rev. Sci. Instrum. 71 4545
[27] The HITRAN database can be found at http://www.hitran.com
[28] Elia A, Franco C D, Spagnolo V, Lugará P M and Scamarcio G 2009 Sensors 9 2697
[29] Arnott W P, Moosmüller H, Sheridan P J, Ogren J A, Raspet R, Slaton W V, Hand J L, Kreidenweis S M and Collett J L 2003 J. Geophys. Res. 108 4034
[30] Arthur Sedlacek and Jeonghoon Lee 2007 Aerosol Sci. Tech. 41 1089
[31] Bergstrom R W, Russell P B and Hignett 2002 J. Atmos. Sci. 59 567
[32] Bond T C, Bergstrom R W 2006 Aerosol Sci. Tech. 40 27
[33] Gyawali M, Arnott W P, Lewis K and Moosmüller H 2009 Atmos. Chem. Phys. 9 8007
[34] Flowers B A, Dubey M K, Mazzoleni C, Stone E A, Schauer J J, Kim S W and Yoon S C 2010 Atmos. Chem. Phys. 10 10387
[1] Enhanced absorption process in the thin active region of GaAs based p-i-n structure
Chen Yue(岳琛), Xian-Sheng Tang(唐先胜), Yang-Feng Li(李阳锋), Wen-Qi Wang(王文奇), Xin-Xin Li(李欣欣), Jun-Yang Zhang(张珺玚), Zhen Deng(邓震), Chun-Hua Du(杜春花), Hai-Qiang Jia(贾海强), Wen-Xin Wang(王文新), Wei Lu(陆卫), Yang Jiang(江洋), and Hong Chen(陈弘). Chin. Phys. B, 2021, 30(9): 097803.
[2] Origin of anomalous enhancement of the absorption coefficient in a PN junction
Xiansheng Tang(唐先胜), Baoan Sun(孙保安), Chen Yue(岳琛), Xinxin Li(李欣欣), Junyang Zhang(张珺玚), Zhen Deng(邓震), Chunhua Du(杜春花), Wenxin Wang(王文新), Haiqiang Jia(贾海强), Yang Jiang(江洋), Weihua Wang(汪卫华), and Hong Chen(陈弘). Chin. Phys. B, 2021, 30(9): 097804.
[3] Optical properties of core/shell spherical quantum dots
Shuo Li(李硕), Lei Shi(石磊), Zu-Wei Yan(闫祖威). Chin. Phys. B, 2020, 29(9): 097802.
[4] Quantal studies of sodium 3p←3s photoabsorption spectra perturbed by ground lithium atoms
N Lamoudi, F Talbi, M T Bouazza, M Bouledroua, K Alioua. Chin. Phys. B, 2019, 28(6): 063202.
[5] Analysis of highly efficient perovskite solar cells with inorganic hole transport material
I Kabir, S A Mahmood. Chin. Phys. B, 2019, 28(12): 128801.
[6] Theoretical investigation of the pressure broadening D1 and D2 lines of cesium atoms colliding with ground-state helium atoms
Moussaoui Abdelaziz, Alioua Kamel, Allouche Abdul-rahman, Bouledroua Moncef. Chin. Phys. B, 2019, 28(10): 103103.
[7] Light absorption coefficients of ionic liquids under electric field
Ji Zhou(周吉), Shi-Kui Dong(董士奎), Zhi-Hong He(贺志宏), Ju-Lius Caesar Puoza, Yan-Hu Zhang(张彦虎). Chin. Phys. B, 2019, 28(1): 017801.
[8] Pressure-broadened atomic Li(2s-2p) line perturbed by ground neon atoms in the spectral wings and core
Sabri Bouchoucha, Kamel Alioua, Moncef Bouledroua. Chin. Phys. B, 2017, 26(7): 073202.
[9] Effect of size and indium-composition on linear and nonlinear optical absorption of InGaN/GaN lens-shaped quantum dot
Ahmed S Jbara, Zulkafli Othaman, M A Saeed. Chin. Phys. B, 2016, 25(5): 057801.
[10] Monitoring the reaction between AlCl3 and o-xylene by using terahertz spectroscopy
Jin Wu-Jun (金武军), Li Tao (李涛), Zhao Kun (赵昆), Zhao Hui (赵卉). Chin. Phys. B, 2013, 22(11): 118701.
[11] Nonlinear optical characterization of phosphate glasses based on ZnO using the Z-scan technique
Masoumeh Shokati Mojdehi, Wan Mahmood Mat Yunus, Khor Shing Fhan, Zainal Abidin Talib, N. Tamchek. Chin. Phys. B, 2013, 22(11): 117802.
[12] The effect of an optical pump on the absorption coefficient of magnesium-doped near-stoichiometric lithium niobate in terahertz range
Zuo Zhi-Gao (左志高), Ling Fu-Ri (凌福日), Ma De-Cai (马德才), Wu Liang (吴亮), Liu Jin-Song (刘劲松), Yao Jian-Quan (姚建铨). Chin. Phys. B, 2013, 22(10): 107802.
[13] Intersubband absorption with difference-frequency generation in GaAs asymmetric quantum wells
Cao Xiao-Long (曹小龙), Li Zhong-Yang (李忠洋), Yao Jian-Quan (姚建铨), Wang Yu-Ye (王与烨), Zhu Neng-Nian (朱能念), Zhong Kai (钟凯), Xu De-Gang (徐德刚 ). Chin. Phys. B, 2012, 21(8): 084207.
[14] Band structure and absorption coefficient in GaN/AlGaN quantum wires
Yao Wen-Jie(姚文杰), Yu Zhong-Yuan(俞重远), and Liu Yu-Min(刘玉敏). Chin. Phys. B, 2010, 19(7): 077101.
[15] The simulation of temperature dependence of responsivity and response time for 6H-SiC UV photodetector
Zhang Yi-Men(张义门), Zhou Yong-Hua(周拥华), and Zhang Yu-Ming(张玉明). Chin. Phys. B, 2007, 16(5): 1276-1279.
No Suggested Reading articles found!