Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(5): 058902    DOI: 10.1088/1674-1056/23/5/058902
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Biham-Middleton-Levine model in consideration of cooperative willingness

Pan Wei (盘薇)a b, Xue Yu (薛郁)a, Zhao Rui (赵瑞)a, Lu Wei-Zhen (卢伟真)b
a College of Physical Science and Technology, Guangxi University, Nanning 530004, China;
b Department of Civil & Architectural Engineering, City University of Hong Kong, Hong Kong HKSAR, China
Abstract  In this paper, the Biham-Middleton-Levine (BML) model with consideration of cooperative willingness has been proposed to study the traffic flow in urban networks. An evolutionary game with a cooperative willingness profile is introduced to deal with conflicts between disturbing neighbors. Simulation results suggest that imitating cooperative willingness can ease the effect of premature seizure on traffic flow due to the introduction of evolutionary games. Phase diagrams with a strategy profile and cooperative willingness profile have been investigated in detail. Our findings also prove that by imitating the more successful, cooperative willingness instead of simply the more successful strategies, the evolution of cooperation is significantly promoted, hence improving the order of cooperation and relieving the pressure of traffic networks.
Keywords:  traffic flow      phase transition      cooperative willingness      evolutionary game  
Received:  11 September 2013      Revised:  15 November 2013      Accepted manuscript online: 
PACS:  89.40.-a (Transportation)  
  05.50.+q (Lattice theory and statistics)  
  64.70.-p (Specific phase transitions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11262003), the Hong Kong Research Grants Council (RGC)-General Research Fund (GRF) Grant, China (Grant No. CityU 118212), the Strategic Research Grant, City University of Hong Kong, China (Grant No. CityU-SRG 7002718), and the Graduate Student Innovative Foundation of Guangxi Zhuang Autonomous Region, China (Grant No. YCSZ2012013).
Corresponding Authors:  Xue Yu, Lu Wei-Zhen     E-mail:  yuxuegxu@gxu.edu.cn;bcwzlu@cityu.edu.hk
About author:  89.40.-a; 05.50.+q; 64.70.-p

Cite this article: 

Pan Wei (盘薇), Xue Yu (薛郁), Zhao Rui (赵瑞), Lu Wei-Zhen (卢伟真) Biham-Middleton-Levine model in consideration of cooperative willingness 2014 Chin. Phys. B 23 058902

[1] Biham O, Middleton A A and Levine D 1992 Phys. Rev. A 46 R6124
[2] Nagel K and Schreckenberg M 1992 J. Phys. I France 2 2221
[3] Bando M, Hasebe K, Nakayama A, Shibata A and Sugiyama Y 1995 Phys. Rev. E 51 1035
[4] Nagel K 1996 Phys. Rev. E 53 4655
[5] Helbing D and Tilch B 1998 Phys. Rev. E 58 133
[6] Knospe W, Santen L, Schadschneider A and Schreckenberg M 2000 J. Phys. A: Math. Gen. 33 L477
[7] Kerner B S and Klenov S L 2002 J. Phys. A: Math. Gen. 35 L31
[8] Nagatani T 1993 Phys. Rev. E 48 3290
[9] Chung K H, Hui P M and Gu G Q 1995 Phys. Rev. E 51 772
[10] Chowdhury D and Schadschneider A 1999 Phys. Rev. E 55 R1311
[11] Brockfeld E, Barlovic R, Schadschneider A and Schreckenberg M 2001 Phys. Rev. E 64 056132
[12] Benyoussef A, Chakib H and Ez-Zahraouy H 2003 Phys. Rev. E 68 026129
[13] D'Souza R M 2005 Phys. Rev. E 71 066112
[14] Huang D W and Huang W N 2006 Physica A 370 747
[15] Ge H X, Dai S Q and Dong L Y 2008 Chin. Phys. B 17 23
[16] Peng G H and Sun D H 2009 Chin. Phys. B 18 5420
[17] Tang T Q, Huang H J and Shang H Y 2010 Chin. Phys. B 19 050517
[18] Xiong T, Zhang P, Wong S C, Shu C W and Zhang M P 2011 Chin. Phys. Lett. 28 108901
[19] Szab G and Fáth G 2007 Phys. Rep. 446 97
[20] Perc M 2007 New J. Phys. 9 3
[21] Sun X Y, Jiang R, Hao Q Y and Wang B H 2010 Europhys. Lett. 92 18003
[22] Tanimoto J, Hagishima A and Tanaka Y 2010 Physica A 389 5611
[23] Hao Q Y, Jiang R, Hu M B, Jia B and Wu Q S 2011 Phys. Rev. E 84 036107
[24] Xie J J and Xue Y 2012 Acta Phys. Sin. 61 194502 (in Chinese)
[25] Szolnoki A, Xie N G, Wang C and Perc M 2011 Europhys. Lett. 96 38002
[26] Szolnoki A, Xie N G, Ye Y and Perc M 2013 Phys. Rev. E 87 042805
[27] Hofbauer J and Sigmund K 1998 Evolutionary Games and Population Dynamics (Cambridge: Cambridge University Press) p. 93
[28] Jones G R and George J M 1998 Acad. Manage. Rev. 23 531
[29] Sun X Y, Jiang R and Wang B H 2010 Chin. Phys. Lett. 27 058902
[30] Zhang J W and Zou Y 2010 Physics 39 184
[31] Li C Y, Tang T Q, Huang H J and Shang H Y 2011 Chin. Phys. Lett. 28 038902
[1] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[2] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[3] Liquid-liquid phase transition in confined liquid titanium
Di Zhang(张迪), Yunrui Duan(段云瑞), Peiru Zheng(郑培儒), Yingjie Ma(马英杰), Junping Qian(钱俊平), Zhichao Li(李志超), Jian Huang(黄建), Yanyan Jiang(蒋妍彦), and Hui Li(李辉). Chin. Phys. B, 2023, 32(2): 026801.
[4] A novel lattice model integrating the cooperative deviation of density and optimal flux under V2X environment
Guang-Han Peng(彭光含), Chun-Li Luo(罗春莉), Hong-Zhuan Zhao(赵红专), and Hui-Li Tan(谭惠丽). Chin. Phys. B, 2023, 32(1): 018902.
[5] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[6] Traffic flow of connected and automated vehicles at lane drop on two-lane highway: An optimization-based control algorithm versus a heuristic rules-based algorithm
Huaqing Liu(刘华清), Rui Jiang(姜锐), Junfang Tian(田钧方), and Kaixuan Zhu(朱凯旋). Chin. Phys. B, 2023, 32(1): 014501.
[7] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[8] Configurational entropy-induced phase transition in spinel LiMn2O4
Wei Hu(胡伟), Wen-Wei Luo(罗文崴), Mu-Sheng Wu(吴木生), Bo Xu(徐波), and Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2022, 31(9): 098202.
[9] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[10] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[11] Evolution of donations on scale-free networks during a COVID-19 breakout
Xian-Jia Wang(王先甲) and Lin-Lin Wang(王琳琳). Chin. Phys. B, 2022, 31(8): 080204.
[12] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[13] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[14] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[15] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
No Suggested Reading articles found!