Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(4): 044701    DOI: 10.1088/1674-1056/23/4/044701
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

A fractal approach to low velocity non-Darcy flow in a low permeability porous medium

Cai Jian-Chao (蔡建超)
Institute of Geophysics and Geomatics, Key Laboratory of Tectonics and Petroleum Resources of Ministryof Education, China University of Geosciences, Wuhan 430074, China
Abstract  In this paper, the mechanism for fluid flow at low velocity in a porous medium is analyzed based on plastic flow of oil in a reservoir and the fractal approach. The analytical expressions for flow rate and velocity of non-Newtonian fluid flow in the low permeability porous medium are derived, and the threshold pressure gradient (TPG) is also obtained. It is notable that the TPG (J) and permeability (K) of the porous medium analytically exhibit the scaling behavior J K-DT/(1 + DT), where DT is the fractal dimension for tortuous capillaries. The fractal characteristics of tortuosity for capillaries should be considered in analysis of non-Darcy flow in a low permeability porous medium. The model predictions of TPG show good agreement with those obtained by the available expression and experimental data. The proposed model may be conducible to a better understanding of the mechanism for nonlinear flow in the low permeability porous medium.
Keywords:  fractal      porous media      non-Darcy flow      threshold pressure gradient      scaling law  
Received:  11 June 2013      Revised:  05 September 2013      Accepted manuscript online: 
PACS:  47.50.-d (Non-Newtonian fluid flows)  
  05.45.Df (Fractals)  
  47.15.-x (Laminar flows)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 41102080), the Fundamental Research Funds for the Central Universities, China (Grant Nos. CUG130404 and CUG130103), the Fund from the Key Laboratory of Tectonics and Petroleum Resources of Ministry of Education, China University of Geosciences (Wuhan), China (Grant No. TPR-2013-18).
Corresponding Authors:  Cai Jian-Chao     E-mail:  caijc@cug.edu.cn
About author:  47.50.-d; 05.45.Df; 47.15.-x

Cite this article: 

Cai Jian-Chao (蔡建超) A fractal approach to low velocity non-Darcy flow in a low permeability porous medium 2014 Chin. Phys. B 23 044701

[1] Wang X H, Liu Z F, Wu Q S and Li B 2002 Physica A 311 320
[2] Dehghanpour H, Aminzadeh B, Mirzaei M and DiCarlo D A 2011 Phys. Rev. E 83 065302
[3] Mirzaei-Paiaman A, Masihi M and Standnes D C 2011 Transp. Porous Media 89 49
[4] Cheng C L, Kang M, Perfect E, Voisin S, Horita J, Bilheux H Z, Warren J M, Jacobson D L and Hussey D S 2012 Soil Sci. Soc. Am. J. 76 1184
[5] Xiao B Q, Fan J T and Ding F 2012 Energy Fuels 26 6971
[6] Masoodi R and Pillai K M 2012 J. Porous Media 15 775
[7] Dou Z and Zhou Z F 2013 Int. J. Heat Fluid Flow 42 23
[8] Cheng C L, Gragg M J, Perfect E, White M D, Lemiszki P J and McKay L D 2013 Int. J. Greenh. Gas Con. 18 277
[9] Kececioglu I and Jiang Y 1994 J. Fluids Eng. 116 164
[10] He N, Reynolds A C and Oliver D S 1997 SPE J. 2 312
[11] Prada A and Civan F 1999 J. Pet. Sci. Eng. 22 237
[12] Zhu W, Song H, Huang X, Liu X, He D and Ran Q 2011 Energy Fuels 25 1111
[13] Zeng Z and Grigg R 2006 Transp. Porous Media 63 57
[14] Wang S, Huang Y and Civan F 2006 J. Pet. Sci. Eng. 50 83
[15] Swartzendruber D 1962 J. Geophys. Res. 67 5205
[16] Derjaguin B and Churayev N 1971 J. Colloid Interface Sci. 36 415
[17] Chai Z, Shi B, Guo Z and Rong F 2011 J. Non-Newt. Fluid Mech. 166 332
[18] Liu W, Yao J and Wang Y 2012 Int. J. Heat Mass Transfer 55 6017
[19] Wang X, Thauvin F and Mohanty K 1999 Chem. Eng. Sci. 54 1859
[20] Song F Q, Jiang R J and Li B S 2007 Chin. Phys. Lett. 24 1995
[21] Horn R, Smith D and Haller W 1989 Chem. Phys. Lett. 162 404
[22] Derjaguin B, Zorin Z, Rabinovich Y I and Churaev N 1974 J. Colloid Interface Sci. 46 437
[23] Wu Y S, Pruess K and Witherspoon P 1991 Transp. Porous Media 6 115
[24] Hammad K J and Vradis G C 1996 Int. J. Heat Mass Transfer 39 1555
[25] Yun M J, Yu B M and Cai J C 2008 Int. J. Heat Mass Transfer 51 1402
[26] Mirzaei-Paiaman A, Masihi M and Standnes D C 2011 Energy Fuels 25 3053
[27] van Engelen G P, Kaul C L, Vos B and Aranha H P 1981 J. Pet. Technol. 33 2539
[28] Masoodi R, Tan H and Pillai K M 2012 AIChE J. 58 2536
[29] Wang X H and Liu Z F 2004 Physica A 337 384
[30] Wen Z, Huang G H and Zhan H B 2008 Adv. Water Res. 31 1754
[31] Wen Z, Liu K and Chen X 2013 J. Hydrol. 498 124
[32] Mandelbrot B B 1982 The Fractal Geometry of Nature (New York: W. H. Freeman)
[33] Perfect E and Blevins R L 1997 Soil. Sci. Soc. Am. J. 61 896
[34] Xiao B Q, Yu B M, Wang Z C and Chen L X 2009 Phys. Lett. A 373 4178
[35] Atzeni C, Pia G and Sanna U 2010 Constr. Build. Mater. 24 1843
[36] Cai J C, Yu B M, Zou M Q and Luo L 2010 Energy Fuels 24 1860
[37] Xiao B Q 2013 Chin. Phys. B 22 014402
[38] Yu B M and Cheng P 2002 Int. J. Heat Mass Transfer 45 2983
[39] Jiang X B, Hou B H, Wang J K, Yin Q X and Zhang M J 2011 Ind. Eng. Chem. Res. 50 10229
[40] Jiang X B, Wang J K, Hou B H and He H G 2013 Ind. Eng. Chem. Res. 52 15685
[41] Cai J C, Hu X Y, Standnes D C and You L J 2012 Colloids Surf. A 414 228
[42] Xiao B Q, Yang Y and Chen L X 2013 Powder Technol. 239 409
[43] Yu B M and Li J H 2001 Fractals 9 365
[44] Feng Y J, Yu B M, Zou M Q and Zhang D M 2004 J. Phys. D: Appl. Phys. 37 3030
[45] Cai J C, Yu B M, Zou M Q and Mei M F 2010 Chem. Eng. Sci. 65 5178
[46] Xiao B Q, Gao S H and Chen L X 2010 Fractals 18 409
[47] Cai J C and Yu B M 2010 Fractals 18 417
[48] Cai J C and Yu B M 2011 Transp. Porous Media 89 251
[49] Bird R B, Stewart W E and Lightfoot E N 1960 Transport Phenomena (New York: Wiley)
[50] Wang Y M, Pang Y M, Yang S F and Chen H L 2005 Geological J. China Universities 11 617 (in Chinese)
[51] Yu B M 2005 Chin. Phys. Lett. 22 158
[52] Yun M J, Yu B M, Zhang B and Huang M T 2005 Chin. Phys. Lett. 22 1464
[53] Kou J L, Tang X M, Zhang H Y, Lu H J, Wu F M, Xu Y S and Dong Y S 2012 Chin. Phys. B 21 044701
[54] Li Z X, Han H B, Cheng L S, Zhang M L and Shi C E 2004 Pet. Explor. Dev. 30 109 (in Chinese)
[55] He X K 2007 Pet. Geology Eng. 21 80 (in Chinese)
[56] Kang M, Perfect E, Cheng C, Bilheux H, Gragg M, Wright D, Lamanna J, Horita J and Warren J 2013 Vadose Zone J. 12 No. 3
[57] Cai J C and Sun S Y 2013 Int. J. Mod. Phys. C 24 1350056
[58] Dehghanpour H, Lan Q, Saeed Y, Fei H and Qi Z 2013 Energy Fuels 27 3039
[59] Mirzaei-Paiaman A and Masihi M 2013 Energy Fuels 27 4662
[60] Mirzaei M and DiCarlo D 2013 Transp. Porous Media 99 37
[1] Energy levels and magnetic dipole transition parameters for the nitrogen isoelectronic sequence
Mu-Hong Hu(胡木宏), Nan Wang(王楠), Pin-Jun Ouyang(欧阳品均),Xin-Jie Feng(冯新杰), Yang Yang(杨扬), and Chen-Sheng Wu(武晨晟). Chin. Phys. B, 2022, 31(9): 093101.
[2] Anomalous Hall effect of facing-target sputtered ferrimagnetic Mn4N epitaxial films with perpendicular magnetic anisotropy
Zeyu Zhang(张泽宇), Qiang Zhang(张强), and Wenbo Mi(米文博). Chin. Phys. B, 2022, 31(4): 047305.
[3] Multifractal analysis of the software evolution in software networks
Meili Liu(刘美丽), Xiaogang Qi(齐小刚), and Hao Pan(潘浩). Chin. Phys. B, 2022, 31(3): 030501.
[4] Invariable mobility edge in a quasiperiodic lattice
Tong Liu(刘通), Shujie Cheng(成书杰), Rui Zhang(张锐), Rongrong Ruan(阮榕榕), and Houxun Jiang(姜厚勋). Chin. Phys. B, 2022, 31(2): 027101.
[5] Fractal sorting vector-based least significant bit chaotic permutation for image encryption
Yong-Jin Xian(咸永锦), Xing-Yuan Wang(王兴元), Ying-Qian Zhang(张盈谦), Xiao-Yu Wang(王晓雨), and Xiao-Hui Du(杜晓慧). Chin. Phys. B, 2021, 30(6): 060508.
[6] Fractal microstructure of Ag film via plasma discharge as SERS substrates
Xue-Fen Kan(阚雪芬), Cheng Yin(殷澄), Zhuang-Qi Cao(曹庄琪), Wei Su(苏巍), Ming-Lei Shan(单鸣雷), and Xian-Ping Wang(王贤平). Chin. Phys. B, 2021, 30(12): 125201.
[7] Dynamic crossover in [VIO2+][Tf2N-]2 ionic liquid
Gan Ren(任淦). Chin. Phys. B, 2021, 30(1): 016105.
[8] Shear-horizontal transverse-electric seismoelectric waves in cylindrical double layer porous media
Wei-Hao Wang(王伟豪), Xiao-Yan Zhu(朱晓焱), Jin-Xia Liu(刘金霞), and Zhi-Wen Cui(崔志文). Chin. Phys. B, 2021, 30(1): 014301.
[9] Analysis of secondary electron emission using the fractal method
Chun-Jiang Bai(白春江), Tian-Cun Hu(胡天存), Yun He(何鋆), Guang-Hui Miao(苗光辉), Rui Wang(王瑞), Na Zhang(张娜), and Wan-Zhao Cui(崔万照). Chin. Phys. B, 2021, 30(1): 017901.
[10] Frequency-dependent reflection of elastic wave from thin bed in porous media
Hong-Xing Li(李红星), Chun-Hui Tao(陶春辉), Cai Liu(刘财), Guang-Nan Huang(黄光南), Zhen-An Yao(姚振岸). Chin. Phys. B, 2020, 29(6): 064301.
[11] Numerical study on permeability characteristics of fractal porous media
Yongping Huang(黄永平), Feng Yao(姚峰), Bo Zhou(周博), Chengbin Zhang(张程宾). Chin. Phys. B, 2020, 29(5): 054701.
[12] Dynamical response of a neuron-astrocyte coupling system under electromagnetic induction and external stimulation
Zhi-Xuan Yuan(袁治轩), Pei-Hua Feng(冯沛华), Meng-Meng Du(独盟盟), Ying Wu(吴莹). Chin. Phys. B, 2020, 29(3): 030504.
[13] Analysis of the fractal intrinsic quality in the ionization of Rydberg helium and lithium atoms
Yanhui Zhang(张延惠), Xiulan Xu(徐秀兰), Lisha Kang(康丽莎), Xiangji Cai(蔡祥吉), Xu Tang(唐旭). Chin. Phys. B, 2018, 27(5): 053401.
[14] Study on the phase transition of the fractal scale-free networks
Qing-Kuan Meng(孟庆宽), Dong-Tai Feng(冯东太), Yu-Ping Sun(孙玉萍), Ai-Ping Zhou(周爱萍), Yan Sun(孙艳), Shu-Gang Tan(谭树刚), Xu-Tuan Gao(高绪团). Chin. Phys. B, 2018, 27(10): 106402.
[15] Detection of meso-micro scale surface features based on microcanonical multifractal formalism
Yuanyuan Yang(杨媛媛), Wei Chen(陈伟), Tao Xie(谢涛), William Perrie. Chin. Phys. B, 2018, 27(1): 010502.
No Suggested Reading articles found!