Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(2): 027803    DOI: 10.1088/1674-1056/23/2/027803
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Optimization of InAs/GaAs quantum-dot structures and application to 1.3-μm mode-locked laser diodes

Li Mi-Feng (李密锋)a, Ni Hai-Qiao (倪海桥)a, Ding Ying (丁颖)b, Bajek Davidb, Kong Liangb, Cataluna Maria Anab, Niu Zhi-Chuan (牛智川)a
a State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
b School of Engineering, Physics and Mathematics, University of Dundee, Dundee DD1 4HN, UK
Abstract  The self-assembled growth of InAs/GaAs quantum dots by molecular beam epitaxy is conducted by optimizing several growth parameters, using a one-step interruption method after island formation. The dependence of photoluminescence on areal quantum-dot density is systematically investigated as a function of InAs deposition, growth temperature and arsenic pressure. The results of this investigation along with time-resolved photoluminescence measurements show that the combination of a growth temperature of 490 ℃, with a deposition rate of 0.02 ML/s, under an arsenic pressure of 1×10-6 Torr (1 Torr=1.33322×102 Pa), provides the best compromise between high density and the photoluminescence of quantum dot structure, with a radiative lifetime of 780 ps. The applicability of this 5-layer quantum dot structure to high-repetition-rate pulsed lasers is demonstrated with the fabrication and characterization of a monolithic InAs/GaAs quantum-dot passively mode-locked laser operating at nearly 1300 nm. Picosecond pulse generation is achieved from a two-section laser, with a ~ 19.7-GHz repetition rate.
Keywords:  InAs quantum dots      molecular beam epitaxy      mode-locked laser      short pulse  
Received:  13 June 2013      Revised:  02 September 2013      Accepted manuscript online: 
PACS:  78.67.Hc (Quantum dots)  
  42.55.Px (Semiconductor lasers; laser diodes)  
  42.60.Fc (Modulation, tuning, and mode locking)  
  81.10.-h (Methods of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)  
Fund: Project supported by the Natural Science Foundation of Beijing, China (Grant No. 4112060), the Special Foundation for National Key Scientific Instrument, China (Grant No. 2012YQ140005), the Open Fund of High Power Laser Laboratory, China Academy of Engineering Physics (Grant No. 2013HEL03), the National Natural Science Foundation of China (Grant No. 61274125), the National Basic Research Program, China (Grant No. 2010CB327601), the State Key Laboratory on Integrated Optoelectronics Open Project, China (Grant No. 2011KFB002). Y. Ding was financially supported by a Marie Curie International Incoming Fellowship within the 7th European Community Framework Programme, and M. A. Cataluna by the financial support through a Royal Academy of Engineering/EPSRC Research Fellowship.
Corresponding Authors:  Ni Hai-Qiao     E-mail:  nihq@semi.ac.cn
About author:  78.67.Hc; 42.55.Px; 42.60.Fc; 81.10.-h

Cite this article: 

Li Mi-Feng (李密锋), Ni Hai-Qiao (倪海桥), Ding Ying (丁颖), Bajek David, Kong Liang, Cataluna Maria Ana, Niu Zhi-Chuan (牛智川) Optimization of InAs/GaAs quantum-dot structures and application to 1.3-μm mode-locked laser diodes 2014 Chin. Phys. B 23 027803

[1] Rafailov E U, Cataluna M A and Sibbett W 2007 Nat. Photon. 1 395
[2] Rafailov E U, Cataluna M A and Avrutin E A 2011 Ultrafast Lasers Based on Quantum Dot Structures: Physics and Devices (Weinheim: Wiley-VCH) p. 272
[3] Borri P, Schneider S, Langbein W and Bimberg D 2006 J. Opt. A: Pure Appl. Opt. 833
[4] Li X, Feng D H, He H Y, Jia T Q, Shan L F, Sun Z R and Xu Z Z 2012 Acta Phys. Sin. 61 197801 (in Chinese)
[5] Thompson M G, Rae A R, Xia M, Penty R V and White I H 2009 IEEE J. Sel. Top. Quant. 15 661
[6] Tang N Y, Chen X S and Lu W 2005 Acta Phys. Sin. 54 5855 (in Chinese)
[7] Solomon G S, Trezza J A and Harris J S 1995 Appl. Phys. Lett. 66 3161
[8] Cataluna M, Ding Y, Nikitichev D I, Fedorova K A and Rafailov E U 2011 IEEE J. Sel. Top. Quant. 17 1302
[9] Maas D, Bellancourt A, Hoffmann M, Rudin B, Barbarin Y, Golling M, Südmeyer T and Keller U 2008 Opt. Express 16 18646
[10] Kuntz M, Fiol G, Lammlin M, Bimberg D, Thompson M, Tan K, Marinelli C, Penty R, White I and Ustinov V 2004 Appl. Phys. Lett. 85 843
[11] Patella F, Fanfoni M, Arciprete F, Nufris S, Placidi E and Balzarotti A 2001 Appl. Phys. Lett. 78 320
[12] Huang S S, Niu Z C, Zhan F, Ni H Q, Zhao H, Wu D H and Sun Z 2008 Chin. Phys. B 17 323
[13] Tian P, Huang L R, Fei S P, Yu Y, Pan B, Xu W and Huang D X 2010 Acta Phys. Sin. 59 5738 (in Chinese)
[14] Nishi K, Saito H, Sugou S and Lee J S 1999 Appl. Phys. Lett. 74 1111
[15] Zhang Z, Wang Z, Xu B, Jin P, Sun Z and Liu F 2004 IEEE Photon. Tech. Lett. 16 27
[16] Polland H J, Leo K, Rother K, Ploog K, Feldmann J, Peter G, Göbel E, Fujiwara K, Nakayama T and Ohta Y 1988 Phys. Rev. B 38 7635
[17] Nakata Y, Mukai K, Sugawara M, Ohtsubo K, Ishikawa H and Yokoyama N 2000 J. Cryst. Growth 208 93
[18] Garcia A, Mateo C, Defensor M, Salvador A, Hui H, Boothroyd C and Philpott E 2007 J. Appl. Phys. 102 073526
[19] Chu L, Arzberger M, Bohm G and Abstreiter G 1999 J. Appl. Phys. 85 2355
[20] Yamaguchi K, Yujobo K and Kaizu T 2000 Jpn. J. Appl. Phys. 39 1245
[1] Strain compensated type II superlattices grown by molecular beam epitaxy
Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2023, 32(4): 046802.
[2] Electroluminescence explored internal behavior of carriers in InGaAsP single-junction solar cell
Xue-Fei Li(李雪飞), Wen-Xian Yang(杨文献), Jun-Hua Long(龙军华), Ming Tan(谭明), Shan Jin(金山), Dong-Ying Wu(吴栋颖), Yuan-Yuan Wu(吴渊渊), and Shu-Long Lu(陆书龙). Chin. Phys. B, 2023, 32(1): 017801.
[3] Selective formation of ultrathin PbSe on Ag(111)
Jing Wang(王静), Meysam Bagheri Tagani, Li Zhang(张力), Yu Xia(夏雨), Qilong Wu(吴奇龙), Bo Li(黎博), Qiwei Tian(田麒玮), Yuan Tian(田园), Long-Jing Yin(殷隆晶), Lijie Zhang(张利杰), and Zhihui Qin(秦志辉). Chin. Phys. B, 2022, 31(9): 096801.
[4] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[5] Reciprocal transformations of the space-time shifted nonlocal short pulse equations
Jing Wang(王静), Hua Wu(吴华), and Da-Jun Zhang(张大军). Chin. Phys. B, 2022, 31(12): 120201.
[6] Interface effect on superlattice quality and optical properties of InAs/GaSb type-II superlattices grown by molecular beam epitaxy
Zhaojun Liu(刘昭君), Lian-Qing Zhu(祝连庆), Xian-Tong Zheng(郑显通), Yuan Liu(柳渊), Li-Dan Lu(鹿利单), and Dong-Liang Zhang(张东亮). Chin. Phys. B, 2022, 31(12): 128503.
[7] Molecular beam epitaxy growth of quantum devices
Ke He(何珂). Chin. Phys. B, 2022, 31(12): 126804.
[8] Plasma assisted molecular beam epitaxial growth of GaN with low growth rates and their properties
Zhen-Hua Li(李振华), Peng-Fei Shao(邵鹏飞), Gen-Jun Shi(施根俊), Yao-Zheng Wu(吴耀政), Zheng-Peng Wang(汪正鹏), Si-Qi Li(李思琦), Dong-Qi Zhang(张东祺), Tao Tao(陶涛), Qing-Jun Xu(徐庆君), Zi-Li Xie(谢自力), Jian-Dong Ye(叶建东), Dun-Jun Chen(陈敦军), Bin Liu(刘斌), Ke Wang(王科), You-Dou Zheng(郑有炓), and Rong Zhang(张荣). Chin. Phys. B, 2022, 31(1): 018102.
[9] Analysis of properties of krypton ion-implanted Zn-polar ZnO thin films
Qing-Fen Jiang(姜清芬), Jie Lian(连洁), Min-Ju Ying(英敏菊), Ming-Yang Wei(魏铭洋), Chen-Lin Wang(王宸琳), and Yu Zhang(张裕). Chin. Phys. B, 2021, 30(9): 097801.
[10] Nanoscale structural investigation of Zn1-xMgxO alloy films on polar and nonpolar ZnO substrates with different Mg contents
Xin Liang(梁信), Hua Zhou(周华), Hui-Qiong Wang(王惠琼), Lihua Zhang(张丽华), Kim Kisslinger, and Junyong Kang(康俊勇). Chin. Phys. B, 2021, 30(9): 096107.
[11] GaSb-based type-I quantum well cascade diode lasers emitting at nearly 2-μm wavelength with digitally grown AlGaAsSb gradient layers
Yi Zhang(张一), Cheng-Ao Yang(杨成奥), Jin-Ming Shang(尚金铭), Yi-Hang Chen(陈益航), Tian-Fang Wang(王天放), Yu Zhang(张宇), Ying-Qiang Xu(徐应强), Bing Liu(刘冰), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2021, 30(9): 094204.
[12] Epitaxial growth and transport properties of compressively-strained Ba2IrO4 films
Yun-Qi Zhao(赵蕴琦), Heng Zhang(张衡), Xiang-Bin Cai(蔡祥滨), Wei Guo(郭维), Dian-Xiang Ji(季殿祥), Ting-Ting Zhang(张婷婷), Zheng-Bin Gu(顾正彬), Jian Zhou(周健), Ye Zhu(朱叶), and Yue-Feng Nie(聂越峰). Chin. Phys. B, 2021, 30(8): 087401.
[13] Dual-wavelength ultraviolet photodetector based on vertical (Al,Ga)N nanowires and graphene
Min Zhou(周敏), Yukun Zhao(赵宇坤), Lifeng Bian(边历峰), Jianya Zhang(张建亚), Wenxian Yang(杨文献), Yuanyuan Wu(吴渊渊), Zhiwei Xing(邢志伟), Min Jiang(蒋敏), and Shulong Lu(陆书龙). Chin. Phys. B, 2021, 30(7): 078506.
[14] Growth of high-crystallinity uniform GaAs nanowire arrays by molecular beam epitaxy
Yu-Bin Kang(亢玉彬), Feng-Yuan Lin(林逢源), Ke-Xue Li(李科学), Ji-Long Tang(唐吉龙), Xiao-Bing Hou(侯效兵), Deng-Kui Wang(王登魁), Xuan Fang(方铉), Dan Fang(房丹), Xin-Wei Wang(王新伟), and Zhi-Peng Wei(魏志鹏). Chin. Phys. B, 2021, 30(7): 078102.
[15] Vertical MBE growth of Si fins on sub-10 nm patterned substrate for high-performance FinFET technology
Shuang Sun(孙爽), Jian-Huan Wang(王建桓), Bao-Tong Zhang(张宝通), Xiao-Kang Li(李小康), Qi-Feng Cai(蔡其峰), Xia An(安霞), Xiao-Yan Xu(许晓燕), Jian-Jun Zhang(张建军), and Ming Li(黎明). Chin. Phys. B, 2021, 30(7): 078104.
No Suggested Reading articles found!