Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(1): 018902    DOI: 10.1088/1674-1056/23/1/018902
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Output regulation for linear multi-agent systems with unmeasurable nodes

Liang Hong-Jing (梁洪晶), Zhang Hua-Guang (张化光), Wang Zhan-Shan (王占山), Wang Jun-Yi (王军义)
College of Information Science and Engineering, Northeastern University, Shenyang 110819, China
Abstract  The output regulation of linear multi-agent systems with partial unmeasurable agents is investigated in this paper. All the agents except the exosystem can be classified into two groups. Agents in the first group can be measured by themselves and their neighbors. State variables are not fully accessible for direct communication and full order Luenberger observers are constructed for the unmeasurable agents. We give a state feedback control law to solve the output regulation problem under the communication topologies based on both measurable and unmeasurable agents. The heterogeneous agents’ synchronization problem is a general case of our results. Finally, examples are utilized to show the effectiveness of the obtained results.
Keywords:  multi-agent systems      output regulation      full order observers  
Received:  13 March 2013      Revised:  20 May 2013      Accepted manuscript online: 
PACS:  89.20.Ff (Computer science and technology)  
  87.85.St (Robotics)  
  89.65.Ef (Social organizations; anthropology ?)  
  02.30.Em (Potential theory)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61034005).
Corresponding Authors:  Zhang Hua-Guang     E-mail:  hgzhang@ieee.org

Cite this article: 

Liang Hong-Jing (梁洪晶), Zhang Hua-Guang (张化光), Wang Zhan-Shan (王占山), Wang Jun-Yi (王军义) Output regulation for linear multi-agent systems with unmeasurable nodes 2014 Chin. Phys. B 23 018902

[1] Fax J A and Murray R M 2004 IEEE Trans. Autom. Control 49 1465
[2] Hong Y G, Gao L X, Cheng D Z and Hu J P 2007 IEEE Trans. Autom. Control 52 943
[3] Jadbabaie A, Lin J and Morse A S 2003 IEEE Trans. Autom. Control 48 988
[4] Lawton J R and Beard R W 2002 Automatica 38 1359
[5] Olfati S R and Murray R M 2004 IEEE Trans. Autom. Control 49 1520
[6] Olfati S R, Fax J A and Murray R M 2007 Proc. IEEE 95 215
[7] Yang H, Jiang B and Zhang H G 2012 Systems & Control Letters 61 1023
[8] Yang H and Jiang B 2011 IEEE Trans. Autom. Control 56 2230
[9] Huang Q Z 2012 Acta Automatica Sinica 38 1127
[10] Yan W S, Li J B and Wang Y T 2012 Acta Automatica Sinica 38 1880
[11] Hu J P and Hong Y G 2007 Phys. A Stat. Mech. Appl. 374 853
[12] Zhang H G, Gong D W and Wang Z S 2011 Chin. Phys. B 20 040512
[13] Wang Y C, Zhang H G, Wang X Y and Yang D S 2010 IEEE Trans. Syst. Man. Cybern. B Cybern. 40 1468
[14] Cui L L, Zhang H G, Chen B and Zhang Q L 2010 Neurocomputing 73 1293
[15] Zhang H G, Wei Q L and Luo Y H 2008 IEEE Trans. Syst. Man. Cybern. B Cybern. 38 937
[16] Zhang H G, Huang W, Wang Z L and Chai T Y 2006 Phys. Lett. A 350 363
[17] Li T and Fei S M 2008 Neurocomputing 71 1069
[18] Hong Y G, Chen G R and Bushnell L 2008 Automatica 44 846
[19] Meng Z Y, Ren W, Cao Y C and You Z 2011 IEEE Trans. Syst. Man. Cybern. B Cybern. 41 75
[20] Consolini L, Morbidi F, Prattichizzo D and Tosques M 2008 Automatica 44 1343
[21] Luo X Y, Han N N and Guan X P 2010 Chin. Phys. B 19 100202
[22] Wu Z H, Peng L, Xie L B and Wen J W 2012 Chin. Phys. B 21 128902
[23] Francis B A 1977 SIAM J. Control Optim. 15 486
[24] Byrnes C, Lauk I, Gilliam D and Shubov V 2000 IEEE Trans. Autom. Control 45 2236
[25] Marino R and Tomei P 2003 IEEE Trans. Autom. Control 48 2199
[26] Liu J, Liu Z X and Chen Z Q 2012 Nonlinear Dyn. 67 1871
[27] Li R R and Khalil H K 2012 Automatica 48 2550
[28] Xiang J, Wei W and Li Y J 2009 IEEE Trans. Autom. Control 54 1336
[29] Su Y F and Huang J 2012 IEEE Trans. Autom. Control 57 1062
[30] Wang X L, Hong Y G, Huang J and Jiang Z P 2010 IEEE Trans. Autom. Control 55 2891
[31] Su Y F and Huang J 2012 IEEE Trans. Syst. Man. Cybern. B Cybern. 42 864
[32] Su Y F and Huang J 2012 Systems & Control Letters 61 1248
[33] Wieland P, Sepulchre R and Allgwer F 2011 Automatica 47 1068
[34] Horn R A and Johnson C R 1986 Matrix Analysis (Cambridge: Cambridge University Press)
[35] Godsil G and Royle G 2001 Algebraic Graph Theory (New York: Springer-Verlag)
[36] Lunze J 2012 IEEE Trans. Autom. Control 57 2885
[1] Memory-augmented adaptive flocking control for multi-agent systems subject to uncertain external disturbances
Ximing Wang(王希铭), Jinsheng Sun(孙金生), Zhitao Li(李志韬), and Zixing Wu(吴梓杏). Chin. Phys. B, 2022, 31(2): 020203.
[2] Fault-tolerant finite-time dynamical consensus of double-integrator multi-agent systems with partial agents subject to synchronous self-sensing function failure
Zhi-Hai Wu(吴治海) and Lin-Bo Xie(谢林柏). Chin. Phys. B, 2022, 31(12): 128902.
[3] Consensus problems on networks with free protocol
Xiaodong Liu(柳晓东) and Lipo Mo(莫立坡). Chin. Phys. B, 2021, 30(7): 070701.
[4] Group consensus of multi-agent systems subjected to cyber-attacks
Hai-Yun Gao(高海云), Ai-Hua Hu(胡爱花), Wan-Qiang Shen(沈莞蔷), Zheng-Xian Jiang(江正仙). Chin. Phys. B, 2019, 28(6): 060501.
[5] Successive lag cluster consensus on multi-agent systems via delay-dependent impulsive control
Xiao-Fen Qiu(邱小芬), Yin-Xing Zhang(张银星), Ke-Zan Li(李科赞). Chin. Phys. B, 2019, 28(5): 050501.
[6] Mean-square composite-rotating consensus of second-order systems with communication noises
Li-po Mo(莫立坡), Shao-yan Guo(郭少岩), Yong-guang Yu(于永光). Chin. Phys. B, 2018, 27(7): 070504.
[7] Time-varying formation for general linear multi-agent systems via distributed event-triggered control under switching topologies
Jin-Huan Wang(王金环), Yu-Ling Xu(许玉玲), Jian Zhang(张建), De-Dong Yang(杨德东). Chin. Phys. B, 2018, 27(4): 040504.
[8] Leader-following consensus of discrete-time fractional-order multi-agent systems
Erfan Shahamatkhah, Mohammad Tabatabaei. Chin. Phys. B, 2018, 27(1): 010701.
[9] Tracking consensus for nonlinear heterogeneous multi-agent systems subject to unknown disturbances via sliding mode control
Xiang Zhang(张翔), Jin-Huan Wang(王金环), De-Dong Yang(杨德东), Yong Xu(徐勇). Chin. Phys. B, 2017, 26(7): 070501.
[10] Cooperative impulsive formation control for networked uncertain Euler-Lagrange systems with communication delays
Liang-ming Chen(陈亮名), Chuan-jiang Li(李传江), Yan-chao Sun(孙延超), Guang-fu Ma(马广富). Chin. Phys. B, 2017, 26(6): 068703.
[11] Stochastic bounded consensus of second-order multi-agent systems in noisy environment
Hong-Wei Ren(任红卫), Fei-Qi Deng(邓飞其). Chin. Phys. B, 2017, 26(10): 100506.
[12] Asymptotic bounded consensus tracking of double-integratormulti-agent systems with bounded-jerk target based onsampled-data without velocity measurements
Shuang-Shuang Wu(吴爽爽), Zhi-Hai Wu(吴治海), Li Peng(彭力), Lin-Bo Xie(谢林柏). Chin. Phys. B, 2017, 26(1): 018903.
[13] Distributed event-triggered consensus tracking of second-order multi-agent systems with a virtual leader
Jie Cao(曹劼), Zhi-Hai Wu(吴治海), Li Peng(彭力). Chin. Phys. B, 2016, 25(5): 058902.
[14] Consensus for second-order multi-agent systems with position sampled data
Rusheng Wang(王如生), Lixin Gao(高利新), Wenhai Chen(陈文海), Dameng Dai(戴大蒙). Chin. Phys. B, 2016, 25(10): 100202.
[15] Distributed H control of multi-agent systems with directed networks
Liu Wei (刘伟), Liu Ai-Li (柳爱利), Zhou Shao-Lei (周绍磊). Chin. Phys. B, 2015, 24(9): 090208.
No Suggested Reading articles found!