Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(1): 017201    DOI: 10.1088/1674-1056/23/1/017201
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Theoretical study of thermoelectric properties of MoS2

Guo Huai-Hong (郭怀红), Yang Teng (杨腾), Tao Peng (陶鹏), Zhang Zhi-Dong (张志东)
Shenyang National Laboratory for Materials Science, Institute of Metal Research and International Center for Materials Physics, Chinese Academy of Sciences, Shenyang 110016, China
Abstract  We systematically studied the thermoelectric properties of MoS2 with doping based on the Boltzmann transport theory and first-principles calculations. We obtained an optimal doping region (around 1019 cm-3) for thermoelectric properties along in-plane and cross-plane directions. MoS2 in the optimal doping region has a vanishingly small anisotropy of thermopower possibly due to the decoupling of in-plane and cross-plane conduction channels, but big anisotropies of electrical conductivity σ and electronic thermal conductivity κe arising from the anisotropic electronic scattering time. The κe is comparable to the lattice counterpart κl in the plane, while κl dominates over κe across the plane. The figure of merit ZT can reach 0.1 at around 700 K with in-plane direction preferred by doping.
Keywords:  MoS2      thermoelectric properties      doping      anisotropy  
Received:  12 August 2013      Revised:  26 September 2013      Accepted manuscript online: 
PACS:  72.20.Pa (Thermoelectric and thermomagnetic effects)  
  72.80.Ga (Transition-metal compounds)  
  31.15.A- (Ab initio calculations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11004201 and 51331006), the National Basic Research Program of China (Grant No. 2012CB933103), and the IMR SYNL-Young Merit Scholars and T. S. Kê Research Grant, China.
Corresponding Authors:  Yang Teng     E-mail:  yangteng@imr.ac.cn

Cite this article: 

Guo Huai-Hong (郭怀红), Yang Teng (杨腾), Tao Peng (陶鹏), Zhang Zhi-Dong (张志东) Theoretical study of thermoelectric properties of MoS2 2014 Chin. Phys. B 23 017201

[1] Rapoport L, Bilik Y, Feldman Y, Homyonfer M, Cohen S R and Tenne R 1997 Nature 387 791
[2] Martin J M, Donnet C and Mogne T L 1993 Phys. Rev. B 48 10583
[3] Gates B C 1992 Catalytic Chemistry (New York: Wiley) p. 1
[4] Zong X, Yan H J, Wu G P, Ma G J, Wen F Y, Wang L and Li C 2008 J. Am. Chem. Soc. 130 7176
[5] McGovern I T, Dietz E, Rotermund H H, Bradshaw A M, Braun W, Radlik W and McGilp J F 1985 Surf. Sci. 152–153 1203
[6] Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nature Nanotechnol. 6 147
[7] Li Y B, Bando Y and Golberg D 2003 Appl. Phys. Lett. 82 1962
[8] Gourmelon E, Lignierb O, Hadoudaa H, Couturierb G, Bern’edea J C, Teddb J, Pouzeta J and Salardenneb J 1997 Sol. Energy Mater. Sol. Cells 46 115
[9] Chen J, Kuriyama N, Yuan H T, Takeshita H T and Sakai T 2001 J. Am. Chem. Soc. 123 11813
[10] Xiao J, Choi D, Cosimbescu L, Koech P, Liu J and Lemmon J P 2010 Chem. Mater. 22 4522
[11] Mak K F, Lee C G, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805
[12] Lee C G, Yan H G, Brus L E, Heinz T F, Hone J and Ryu S 2011 ACS Nano 4 2695
[13] Ataca C, Topsakal M, Aktürk E and Ciraci S 2011 J. Phys. Chem. C 115 16354
[14] Chiritescu C, Cahill D G, Nguyen N, Johnson D, Bodapati A, Keblinski P and Zschack P 2007 Science 315 351
[15] Kim J Y, Choi S M, Seo W S and Cho W S 2010 Bull. Korean Chem. Soc. 31 3225
[16] Thakurta S R G and Dutta A K 1983 J. Phys. Chem. Solids 44 407
[17] Mansfield R and Salam S A 1953 Proc. Phys. Soc. B 66 377
[18] Agarwal M K and Talele L T 1986 Sol. State Comm. 59 549
[19] Guo H H, Yang T, Tao P, Wang Y and Zhang Z D 2013 J. Appl. Phys. 113 013709
[20] Mahan G D 1998 Solid State Physics Vol. 51 (Ehrenreich H and Saepen F, ed.) (San Diego: Academic Press) pp. 82–152
[21] Hu H, Cai J M, Zhang C D, Gao M, Pan Y, Du S X, Sun Q F, Niu Q, Xie X C and Gao H J 2010 Chin. Phys. B 19 037202
[22] Sun Y, Wang C L, Wang H C, Su W B, Liu J, Peng H and Mei L M 2011 Acta Phys. Sin. 60 087204 (in Chinese)
[23] Li P C, Yang H S, Li Z Q, Chai Y S and Cao L Z 2002 Chin. Phys. 11 282
[24] Wang H C, Wang C L, Su W B, Liu J, Sun Y, Peng H, Zhang J L, Zhao M L, Li J C, Yin N and Mei L M 2009 Chin. Phys. Lett. 26 107301
[25] Blaha P, Schwarz K, Madsen G, Kvasnicka D and Luitz J 2011 WIEN2k: An augmented plane wave plus local orbitals program for calculating crystal properties (TU Vienna, Vienna)
[26] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[27] Engel E and Vosko S H 1993 Phys. Rev. B 47 13164
[28] Coehoorn R, Haas C, Dijkstra J and Flipse C J F 1987 Phys. Rev. B 35 6195
[29] Madsen G K H, Schwarz K, Blaha P and Singh D J 2003 Phys. Rev. B 68 125212
[30] Wu Y D, He Y J and Wang Z M 2004 Chin. Phys. 21 1848
[31] Parker D, Du M H and Singh D J 2011 Phys. Rev. B 83 245111
[32] Zhang L and Singh D J 2009 Phys. Rev. B 80 075117
[33] Han S W, Kwon H, Kim S K, Ryu S, Yun W S, Kim D H, Hwang J H, Kang J S, Baik J, Shin H J and Hong S C 2011 Phys. Rev. B 84 045409
[34] Kam K K and Parkinson B A 1982 J. Phys. Chem. 86 463
[35] Rowe D M and Min G 1995 J. Mater. Sci. Lett. 14 617
[36] Zhang Y, Ke X Z, Chen C F, Yang J H and Kent P R C 2011 Phys. Rev. Lett. 106 206601
[37] Snyder G J and Toberer E S 2008 Nature Mater. 7 105
[38] Ong K P, Singh D J and Wu P 2010 Phys. Rev. Lett. 104 176601
[39] Ong K P, Zhang J, Tse J S and Wu P 2010 Phys. Rev. B 81 115120
[40] Tang G D, Guo H H, Yang T, Zhang D W, Xu X N, Wang L Y, Wang Z H, Wen H H, Zhang Z D and Du Y W 2011 Appl. Phys. Lett. 98 202109
[41] Ziman J M 1972 Principles of the Theory of Solids (2nd edn.) (Cambridge: Cambridge University Press) p. 228
[42] Varshneya V, Patnaikc S S, Muratorea C, Roya A K, Voevodina A A and Farmera B L 2010 Computational Materials Science 48 101
[43] Miyazaki Y, Ogawa H and Kajitani T 2004 Jpn. J. Appl. Phys. 43 L1202
[1] Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然),Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(4): 047202.
[2] Recent progress on the planar Hall effect in quantum materials
Jingyuan Zhong(钟景元), Jincheng Zhuang(庄金呈), and Yi Du(杜轶). Chin. Phys. B, 2023, 32(4): 047203.
[3] Resonant perfect absorption of molybdenum disulfide beyond the bandgap
Hao Yu(于昊), Ying Xie(谢颖), Jiahui Wei(魏佳辉), Peiqing Zhang(张培晴),Zhiying Cui(崔志英), and Haohai Yu(于浩海). Chin. Phys. B, 2023, 32(4): 048101.
[4] Suppression and compensation effect of oxygen on the behavior of heavily boron-doped diamond films
Li-Cai Hao(郝礼才), Zi-Ang Chen(陈子昂), Dong-Yang Liu(刘东阳), Wei-Kang Zhao(赵伟康),Ming Zhang(张鸣), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东),Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2023, 32(3): 038101.
[5] Vortex bound states influenced by the Fermi surface anisotropy
Delong Fang(方德龙). Chin. Phys. B, 2023, 32(3): 037403.
[6] A three-band perfect absorber based on a parallelogram metamaterial slab with monolayer MoS2
Wen-Jing Zhang(张雯婧), Qing-Song Liu(刘青松), Bo Cheng(程波), Ming-Hao Chao(晁明豪),Yun Xu(徐云), and Guo-Feng Song(宋国峰). Chin. Phys. B, 2023, 32(3): 034211.
[7] High repetition granular Co/Pt multilayers with improved perpendicular remanent magnetization for high-density magnetic recording
Zhi Li(李智), Kun Zhang(张昆), Ao Du(杜奥), Hongchao Zhang(张洪超), Weibin Chen(陈伟斌), Ning Xu(徐宁), Runrun Hao(郝润润), Shishen Yan(颜世申), Weisheng Zhao(赵巍胜), and Qunwen Leng(冷群文). Chin. Phys. B, 2023, 32(2): 026803.
[8] A novel monoclinic phase and electrically tunable magnetism of van der Waals layered magnet CrTe2
Qidi Ren(任启迪), Kang Lai(赖康), Jiahao Chen(陈家浩), Xiaoxiang Yu(余晓翔), and Jiayu Dai(戴佳钰). Chin. Phys. B, 2023, 32(2): 027201.
[9] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[10] Thickness-dependent magnetic properties in Pt/[Co/Ni]n multilayers with perpendicular magnetic anisotropy
Chunjie Yan(晏春杰), Lina Chen(陈丽娜), Kaiyuan Zhou(周恺元), Liupeng Yang(杨留鹏), Qingwei Fu(付清为), Wenqiang Wang(王文强), Wen-Cheng Yue(岳文诚), Like Liang(梁力克), Zui Tao(陶醉), Jun Du(杜军),Yong-Lei Wang(王永磊), and Ronghua Liu(刘荣华). Chin. Phys. B, 2023, 32(1): 017503.
[11] MoS2/Si tunnel diodes based on comprehensive transfer technique
Yi Zhu(朱翊), Hongliang Lv(吕红亮), Yuming Zhang(张玉明), Ziji Jia(贾紫骥), Jiale Sun(孙佳乐), Zhijun Lyu(吕智军), and Bin Lu(芦宾). Chin. Phys. B, 2023, 32(1): 018501.
[12] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[13] In-plane optical anisotropy of two-dimensional VOCl single crystal with weak interlayer interaction
Ruijie Wang(王瑞洁), Qilong Cui(崔其龙), Wen Zhu(朱文), Yijie Niu(牛艺杰), Zhanfeng Liu(刘站锋), Lei Zhang(张雷), Xiaojun Wu(武晓君), Shuangming Chen(陈双明), and Li Song(宋礼). Chin. Phys. B, 2022, 31(9): 096802.
[14] Designing a P2-type cathode material with Li in both Na and transition metal layers for Na-ion batteries
Jianxiang Gao(高健翔), Kai Sun(孙凯), Hao Guo(郭浩), Zhengyao Li(李正耀), Jianlin Wang(王建林), Xiaobai Ma(马小柏), Xuedong Bai(白雪东), and Dongfeng Chen(陈东风). Chin. Phys. B, 2022, 31(9): 098201.
[15] Slight Co-doping tuned magnetic and electric properties on cubic BaFeO3 single crystal
Shijun Qin(覃湜俊), Bowen Zhou(周博文), Zhehong Liu(刘哲宏), Xubin Ye(叶旭斌), Xueqiang Zhang(张雪强), Zhao Pan(潘昭), and Youwen Long(龙有文). Chin. Phys. B, 2022, 31(9): 097503.
No Suggested Reading articles found!