Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(1): 013401    DOI: 10.1088/1674-1056/23/1/013401
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Mαβ X-ray production cross sections of Pb and Bi by 9–40 keV electron impact

Wu Ying (吴英)a b, Wang Guan-Ying (王冠鹰)a, Mu Qiang (穆强)a, Zhao Qiang (赵强)a
a School of Nuclear Science and Engineering, North China Electric Power University, Beijing 102206, China;
b Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China
Abstract  The experimental data of Mαβ X-ray production cross sections for Pb and Bi by 9–40 keV electron impact have been given. Thin films with thick carbon substrates are used in the experiment. The effects of target structure on the Mαβ X-ray production cross sections are corrected by using the Monte Carlo method. The corrected experimental data are compared with calculated cross sections in terms of the distorted-wave Born approximation (DWBA) theory. The measured Mαβ X-ray production cross sections for Pb and Bi are lower than the DWBA calculations. The atomic relaxation parameters used in comparing the DWBA values with experimental results affect the degree of difference.
Keywords:  electron impact      M-shell X-ray production cross sections      Monte Carlo method  
Received:  08 January 2013      Revised:  04 July 2013      Accepted manuscript online: 
PACS:  34.80.Dp (Atomic excitation and ionization)  
  02.70.Uu (Applications of Monte Carlo methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11275071).
Corresponding Authors:  Wu Ying     E-mail:  w_y@ncepu.edu.cn

Cite this article: 

Wu Ying (吴英), Wang Guan-Ying (王冠鹰), Mu Qiang (穆强), Zhao Qiang (赵强) Mαβ X-ray production cross sections of Pb and Bi by 9–40 keV electron impact 2014 Chin. Phys. B 23 013401

[1] Powell C J 1976 Rev. Mod. Phys. 48 33
[2] Powell C J 1985 in Electron Impact Ionization (Ed. T. D. Märk and G. H. Dunn) (New York: Springer-Verlag) pp. 198–231
[3] Nagashima Y, Saito F, Itoh Y, Goto A and Hyodo T 2004 Phys. Rev. Lett. 92 223201
[4] Segui S, Dingfelder M and Salvat F 2003 Phys. Rev. A 67 062710
[5] Colgan J, Fontes C J and Zhang H L 2006 Phys. Rev. A 73 062711
[6] Salzmann D, Reich Ch, Uschmann I, Förster E and Gibbon P 2002 Phys. Rev. E 65 036402
[7] Riley D, Angulo-Gareta J J, Khattak F Y, Lamb M J, Foster P S, Divall E J, Hooker C J, Langley A J, Clarke R J and Neely D 2005 Phys. Rev. E 71 016406
[8] Köster P, Akli K, Batani D, Baton S, Evans R G, Giulietti A, Giulietti D, Gizzi L A, Green J S, Koenig M, Labate L, Morace A, Norreys P, Perez F, Waugh J, Woolsey N and Lancaster K L 2009 Plasma Phys. Contr. Fusion 51 014007
[9] Hippler R 1990 Phys. Lett. A 144 81
[10] Khare S P and Wadehra J M 1996 Can. J. Phys. 74 376
[11] Wu Z W, Yang D L, Luo X B, He F Q, Peng X F and Luo Z M 2003 Chin. Phys. Lett. 20 1485
[12] Gou C J, Wu Z W, Peng X F, He F Q and Luo Z M 2005 Chin. Phys. Lett. 22 2538
[13] Wu Y, An Z, Duan Y M, Liu M T and Ouyang X P 2012 Can. J. Phys. 90 125
[14] Zhu J J, An Z, Liu M T and Tian L X 2009 Phys. Rev. A 79 052710
[15] Wu Y, An Z, Duan Y M and Liu M T 2010 Nucl. Instrum. Methods Phys. Res. B 268 2820
[16] Wu Y, An Z, Duan Y M, Liu M T and Wu J 2011 Nucl. Instrum. Methods Phys. Res. B 269 117
[17] Wu Y, An Z, Duan Y M and Liu M T 2010 J. Phys. B 43 135206
[18] Wu Y, An Z, Duan Y M and Liu M T 2010 Nucl. Instrum. Methods Phys. Res. B 268 2473
[19] Merlet C, Llovet X and Salvat F 2008 Phys. Rev. A 78 022704
[20] Moy A, Merlet C, Llovet X and Dugne O 2013 J. Phys. B 46 115202
[21] Perkins S T, Cullen D E, Chen M H, Hubbell J H, Rath J and Scofield J 1991 Report UCRL-50400 30 (Livermore, CA: Lawrence Livermore National Laboratory)
[22] Llovet X, Merlet C and Salvat F 2000 J. Phys. B 33 3761
[23] Wu Y, An Z, Duan Y M, Liu M T and Tang C H 2007 J. Phys. B 40 735
[24] An Z, Liu M T, Fu Y C, Luo Z M, Tang C H, Li C M, Zhang B H and Tang Y J 2003 Nucl. Instrum. Methods Phys. Res. B 207 268
[25] An Z and Liu M T 2002 Nucl. Instrum. Methods Phys. Res. B 194 513
[26] Salvat F, Fernández-Varea J M and Sempau J 2005 PENELOPE: A Code System for Monte Carlo Simulation of Electron and Photon Transport
[27] Wu Y and An Z 2006 Nucl. Phys. Rev. 23 62 (in Chinese)
[28] Bote D, Salvat F, Jablonski A and Powell C J 2009 At. Data Nucl. Data Tables 95 871
[29] Chanhan Y and Puri S 2008 Atomic Data and Nuclear Tables 94 38
[30] Chauhan Y, Kumar A and Puri S 2009 Atomic Data and Nuclear Tables 95 475
[31] Khan M R and Karimi M 1980 X-ray Spectrom 9 32
[32] Papp T, Campbell J L and Raman S 1993 J. Phys. B 26 4007
[33] Puri S, Mehta D, Singh N and Trehan P N 1996 Phys. Rev. A 54 617
[34] Puri S 2007 Atomic Data and Nuclear Tables 93 730
[35] Campos C S, Vasconcellos M A Z, Llovet X and Salvat F 2002 Phys. Rev. A 66 012719
[36] Shevelko V P, Solomon A M and Vukstich V S 1991 Phys. Scr. 43 158
[1] Solving quantum rotor model with different Monte Carlo techniques
Weilun Jiang(姜伟伦), Gaopei Pan(潘高培), Yuzhi Liu(刘毓智), and Zi-Yang Meng(孟子杨). Chin. Phys. B, 2022, 31(4): 040504.
[2] Sensitivity of heavy-ion-induced single event burnout in SiC MOSFET
Hong Zhang(张鸿), Hong-Xia Guo(郭红霞), Feng-Qi Zhang(张凤祁), Xiao-Yu Pan(潘霄宇), Yi-Tian Liu(柳奕天), Zhao-Qiao Gu(顾朝桥), An-An Ju(琚安安), and Xiao-Ping Ouyang(欧阳晓平). Chin. Phys. B, 2022, 31(1): 018501.
[3] Effective model for rare-earth Kitaev materials and its classical Monte Carlo simulation
Mengjie Sun(孙梦杰), Huihang Lin(林慧航), Zheng Zhang(张政), Yanzhen Cai(蔡焱桢), Wei Ren(任玮), Jing Kang(康靖), Jianting Ji(籍建葶), Feng Jin(金峰), Xiaoqun Wang(王孝群), Rong Yu(俞榕), Qingming Zhang(张清明), and Zhengxin Liu(刘正鑫). Chin. Phys. B, 2021, 30(8): 087503.
[4] Multiple scattering and modeling of laser in fog
Ji-Yu Xue(薛积禹), Yun-Hua Cao(曹运华), Zhen-Sen Wu(吴振森), Jie Chen(陈杰), Yan-Hui Li(李艳辉), Geng Zhang(张耿), Kai Yang(杨凯), and Ruo-Ting Gao(高若婷). Chin. Phys. B, 2021, 30(6): 064206.
[5] Frequency response range of terahertz pulse coherent detection based on THz-induced time-resolved luminescence quenching
Man Zhang(张曼), Zhen-Gang Yang(杨振刚), Jin-Song Liu(刘劲松), Ke-Jia Wang(王可嘉), Jiao-Li Gong(龚姣丽), Sheng-Lie Wang(汪盛烈). Chin. Phys. B, 2018, 27(6): 060204.
[6] Comment on “Band gaps structure and semi-Dirac point of two-dimensional function photonic crystals” by Si-Qi Zhang et al.
Hai-Feng Zhang(章海锋). Chin. Phys. B, 2018, 27(1): 014205.
[7] Quantum Monte Carlo study of hard-core bosons in Creutz ladder with zero flux
Yang Lin(林洋), Weichang Hao(郝维昌), Huaiming Guo(郭怀明). Chin. Phys. B, 2018, 27(1): 010204.
[8] Mobility of large clusters on a semiconductor surface: Kinetic Monte Carlo simulation results
M Esen, A T Tüzemen, M Ozdemir. Chin. Phys. B, 2016, 25(1): 013601.
[9] Path integral Monte Carlo study of (H2)n@C70 (n=1,2,3)
Hao Yan (郝妍), Zhang Hong (张红), Cheng Xin-Lu (程新路). Chin. Phys. B, 2015, 24(8): 088103.
[10] Electron impact excitation of helium atom
Han Xiao-Ying (韩小英), Zeng De-Ling (曾德灵), Gao Xiang (高翔), Li Jia-Ming (李家明). Chin. Phys. B, 2015, 24(8): 083103.
[11] Magnetization plateaus and frequency dispersion of hysteresis on frustrated dipolar array
Zhang You-Tian (张又天). Chin. Phys. B, 2015, 24(8): 087502.
[12] Resonance enhanced electron impact excitation for P-like Cu XV
Li Shuang (李双), Yan Jun (颜君), Li Chuan-Ying (李传莹), Huang Min (黄敏), Chen Chong-Yang (陈重阳). Chin. Phys. B, 2015, 24(11): 113401.
[13] Speckle intensity images of target based on Monte Carlo method
Wu Ying-Li (武颖丽), Wu Zhen-Sen (吴振森). Chin. Phys. B, 2014, 23(3): 037801.
[14] Electron impact excitation of Ni-like gold studied by Dirac R-matrix method
Fan Quan-Ping (范全平), Wang Wen-Hui (汪文慧), Hu Feng (胡峰), Cao Lei-Feng (曹磊峰), Zhang Qiang-Qiang (张强强), Liu Yu-Wei (刘钰薇), Jiang Gang (蒋刚). Chin. Phys. B, 2014, 23(11): 113401.
[15] Sorption and permeation of gaseous molecules in amorphous and crystalline PPX C membranes: molecular dynamics and grand canonical Monte Carlo simulation studies
Bian Liang(边亮), Shu Yuan-Jie(舒远杰), and Wang Xin-Feng(王新峰) . Chin. Phys. B, 2012, 21(7): 074208.
No Suggested Reading articles found!