Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(5): 057805    DOI: 10.1088/1674-1056/22/5/057805
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Tunneling effect in cavity-resonator-coupled arrays

Ma Hua (马华)a, Qu Shao-Bo (屈绍波)b, Liang Chang-Hong (梁昌红)c, Zhang Jie-Qiu (张介秋)b, Xu Zhuo (徐卓)a, Wang Jia-Fu (王甲富)b
a Electronic Materials Research Laboratory, Key Laboratory of Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China;
b The College of Science, Air Force University of Engineering, Xi'an 710051, China;
c The College of electronic Engineering, Xidian University, Xi'an 710126, China
Abstract  The quantum tunneling effect (QTE) in a cavity-resonator-coupled (CRC) array was analytically and numerically investigated. The underlying mechanism was interpreted by treating electromagnetic waves as photons, and then was generalized to acoustic waves and matter waves. It is indicated that for the three kinds of waves, the QTE can be excited by cavity resonance in a CRC array, resulting in sub-wavelength transparency through the narrow splits between cavities. This opens up opportunities for designing new types of crystals based on CRC arrays, which may find potential applications such as quantum devices, micro-optic transmission, and acoustic manipulation.
Keywords:  quantum tunneling effect      surface plasmon      cavity-resonator      photonic crystal  
Received:  21 April 2012      Revised:  15 November 2012      Accepted manuscript online: 
PACS:  78.66.Bz (Metals and metallic alloys)  
  42.79.Dj (Gratings)  
  71.36.+c (Polaritons (including photon-phonon and photon-magnon interactions))  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
Corresponding Authors:  Ma Hua     E-mail:  mahuar@163.com

Cite this article: 

Ma Hua (马华), Qu Shao-Bo (屈绍波), Liang Chang-Hong (梁昌红), Zhang Jie-Qiu (张介秋), Xu Zhuo (徐卓), Wang Jia-Fu (王甲富) Tunneling effect in cavity-resonator-coupled arrays 2013 Chin. Phys. B 22 057805

[1] Ebbesen T W, Lezec H J, Ghaemi H F, Thio T and Wolff P A 1998 Nature 391 667
[2] Bethe H A 1944 Phys. Rev. 66 163
[3] Porto J A, Garcia-Vidal F J and Pendry J B 1999 Phys. Rev. Lett. 83 2845
[4] Takakura Y 2001 Phys. Rev. Lett. 86 5601
[5] Yang F and Sambles J R 2002 Phys. Rev. Lett. 89 063901
[6] Raether H 1988 Surface Plasmons (New York: Springer)
[7] Zhou L, Wen W J, Chan C T and Sheng P 2005 Phys. Rev. Lett. 94 243905
[8] Yang S X, Page J H, Liu Z Y, Cowan M L, Chan C T and Sheng P 2002 Phys. Rev. Lett. 88 104301
[9] Xu H, Wang Z Y, Hao J M, Dai J J, Ran L X, Kong J A and Zhou L 2008 Appl. Phys. Lett. 92 041122
[10] Hibbins A P and Sambles J R 2004 Phys. Rev. Lett. 92 143904
[11] Liu W C and Tsai D P 2002 Phys. Rev. B 65 155423
[12] Salomon L, Grillot F, Zayats A V and Fornel F D 2001 Phys. Rev. Lett. 86 1110
[13] Moreno L M, Vidal F J, Lezec H J, Pellerin K M, Thio T, Pendry J B and Ebbesen T W 2001 Phys. Rev. Lett. 86 1114
[14] Yao J and Ye Y H 2012 Chin. Phys. Lett. 29 047802
[15] Li H, Sheng C X and Chen Q 2012 Chin. Phys. Lett. 29 054201
[16] Liu Y S, Lu H F, Xu X L, Gong M G, Liu L and Yang Z 2011 Chin. Phys. Lett. 28 057803
[17] Ke M Z, He Z J, Peng S S, Liu Z Y and Shi J 2007 Phys. Rev. Lett. 99 044301
[18] Lima M M, Kosevich Y A, Santos P V and Cantarero A 2010 Phys. Rev. Lett. 104 165502
[19] Naber W J, Fujisawa T, Liu H W and Wiel W G 2006 Phys. Rev. Lett. 96 136807
[20] Qian B C 1993 Quantum Mechanics (California: Electronic Industry Press) pp. 33-37 (in Chinese)
[21] Baudon J, Hamamda M, Grucker J, Boustimi M, Perales F, Dutier G and Ducloy M 2009 Phys. Rev. Lett. 102 140403
[22] Caloz C and Itoh T 2003 IEEE-MTT Int'l Microwave Symp., vol. 1 Philadelphia, PA, June, 2003 pp. 195-198
[23] Kronig R and Penney W G 1931 Proc. Roy. Soc. A 130 499
[24] Yablonovitch E 1987 Phys. Rev. Lett. 58 2059
[25] John S 1987 Phys. Rev. Lett. 58 2486
[1] Nonreciprocal wide-angle bidirectional absorber based on one-dimensional magnetized gyromagnetic photonic crystals
You-Ming Liu(刘又铭), Yuan-Kun Shi(史源坤), Ban-Fei Wan(万宝飞), Dan Zhang(张丹), and Hai-Feng Zhang(章海锋). Chin. Phys. B, 2023, 32(4): 044203.
[2] A 3-5 μm broadband YBCO high-temperature superconducting photonic crystal
Gang Liu(刘刚), Yuanhang Li(李远航), Baonan Jia(贾宝楠), Yongpan Gao(高永潘), Lihong Han(韩利红), Pengfei Lu(芦鹏飞), and Haizhi Song(宋海智). Chin. Phys. B, 2023, 32(3): 034213.
[3] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[4] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[5] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[6] Multi-band polarization switch based on magnetic fluid filled dual-core photonic crystal fiber
Lianzhen Zhang(张连震), Xuedian Zhang(张学典), Xiantong Yu(俞宪同), Xuejing Liu(刘学静), Jun Zhou(周军), Min Chang(常敏), Na Yang(杨娜), and Jia Du(杜嘉). Chin. Phys. B, 2023, 32(2): 024205.
[7] Chiral lateral optical force near plasmonic ring induced by Laguerre-Gaussian beam
Ying-Dong Nie(聂英东), Zhi-Guang Sun(孙智广), and Yu-Rui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(1): 018702.
[8] Method of measuring one-dimensional photonic crystal period-structure-film thickness based on Bloch surface wave enhanced Goos-Hänchen shift
Yao-Pu Lang(郎垚璞), Qing-Gang Liu(刘庆纲), Qi Wang(王奇), Xing-Lin Zhou(周兴林), and Guang-Yi Jia(贾光一). Chin. Phys. B, 2023, 32(1): 017802.
[9] High sensitivity dual core photonic crystal fiber sensor for simultaneous detection of two samples
Pibin Bing(邴丕彬), Guifang Wu(武桂芳), Qing Liu(刘庆), Zhongyang Li(李忠洋),Lian Tan(谭联), Hongtao Zhang(张红涛), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(8): 084208.
[10] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[11] Effect of surface plasmon coupling with radiating dipole on the polarization characteristics of AlGaN-based light-emitting diodes
Yi Li(李毅), Mei Ge(葛梅), Meiyu Wang(王美玉), Youhua Zhu(朱友华), and Xinglong Guo(郭兴龙). Chin. Phys. B, 2022, 31(7): 077801.
[12] Numerical study of a highly sensitive surface plasmon resonance sensor based on circular-lattice holey fiber
Jian-Fei Liao(廖健飞), Dao-Ming Lu(卢道明), Li-Jun Chen(陈丽军), and Tian-Ye Huang(黄田野). Chin. Phys. B, 2022, 31(6): 060701.
[13] Design of a polarization splitter for an ultra-broadband dual-core photonic crystal fiber
Yongtao Li(李永涛), Jiesong Deng(邓洁松), Zhen Yang(阳圳), Hui Zou(邹辉), and Yuzhou Ma(马玉周). Chin. Phys. B, 2022, 31(5): 054215.
[14] Generation of mid-infrared supercontinuum by designing circular photonic crystal fiber
Ying Huang(黄颖), Hua Yang(杨华), and Yucheng Mao(毛雨澄). Chin. Phys. B, 2022, 31(5): 054211.
[15] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
No Suggested Reading articles found!