Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(2): 027102    DOI: 10.1088/1674-1056/22/2/027102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

A first-principles study of B2 NiAl alloyed with rare earth element Pr, Pm, Sm, and Eu

He Jun-Qi (何君琦), Wang You (王铀), Yan Mu-Fu (闫牧夫), Pan Zhao-Yi (潘兆义), Guo Li-Xin (郭立新)
School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
Abstract  The structural, elastic, and electronic properties of NiAl alloyed with rare earth elements Pr, Pm, Sm, and Eu are investigated by using density functional theory (DFT). The study suggests that Pr, Pm, Sm, and Eu are all tend to be substituted for Al site. Ni8Al7Pm possesses the largest ductility. Only the hardness and ductility of Ni8Al7Eu are enhanced simultaneously. The covalency strength of Ni-Al bond in Ni8Al7Pm is higher than that in Ni8Al7Eu. The covalency strength of Al-Al bond and that of Ni-Ni bond in Ni8Al7Eu are higher than that in Ni8Al7Pm. Ni-Pm bond and Ni-Eu bond are covalent, and the covalency strength of Ni-Pm bond is greater. Al-Pm bond and Al-Eu bond show great covalency strength and ionicity, respectively.
Keywords:  first-principles      intermetallics      rare earth element      electronic structure  
Received:  11 June 2012      Revised:  26 July 2012      Accepted manuscript online: 
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.20.Lp (Intermetallic compounds)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 50871035) and the Program of Excellent Team at Harbin Institute of Technology, China.
Corresponding Authors:  He Jun-Qi, Wang You     E-mail:  wangyou@hit.edu.cn; hejunqi1108@163.com

Cite this article: 

He Jun-Qi (何君琦), Wang You (王铀), Yan Mu-Fu (闫牧夫), Pan Zhao-Yi (潘兆义), Guo Li-Xin (郭立新) A first-principles study of B2 NiAl alloyed with rare earth element Pr, Pm, Sm, and Eu 2013 Chin. Phys. B 22 027102

[1] Guo J T, Huai K W, Gao Q, Ren W L and Li G S 2007 Intermetallics 15 727
[2] Xu Q C and Ven A V 2011 Acta Materialia 59 95
[3] Liu C T, Stringer J and Mundy J N 1997 Intermetallics 5 579
[4] Xu G G, Wu J, Chen Z G, Lin Y B and Huang Z G 2012 Chin. Phys. B 21 097401
[5] Haq B U, Afaq A, Ahmed R and Naseem S 2012 Chin. Phys. B 21 097101
[6] Albiter A, Salazar M, Bedolla E and Drew R J 1997 Mater. Sci. Eng. A 347 154
[7] Chung C Y, Xie C Y and Hsu T Y 1997 Scripta. Mater. 37 99
[8] Kovalev A I, Barskaya R A and Wainstein D L 2003 Surf. Sci. 532-535 35
[9] Lazar P and Podloucky R 2006 Phys. Rev. B 73 1
[10] Fu C L, Liu C T and Wang X L 2004 Intermetallics 12 911
[11] Ren W L, Guo J T, Li G S and Zhou J Y 2003 Mater. Lett. 57 1374
[12] Chen W, Hines J R and Wang Y 2004 Adv. Eng. Mater. 6 876
[13] Wu X Z, Wang S F and Liu R P 2009 Chin. Phys. B 18 2905
[14] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[15] Hammer B, Hansen L B and Norskov J K 1999 Phys. Rev. B 59 7413
[16] Wolf W, Podloucky R and Rogl P 1996 Intermetallics 4 201
[17] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[18] Chen K Y, Zhao L and John R J 2003 Physica D: Appl. Phys. 36 2725
[19] Chen K Y and Zhao L R 2003 J. Appl. Phys. 93 2414
[20] Davenport T, Zhou L and Trivisonno J 1999 Phys Rev. B 59 3421
[21] Farkas D, Mutasa B and Vailhe C 1995 Model. Simul. Mater. Sci. Eng. 3 201
[22] Nye J F 1985 Physical Properties of Crystals (Oxford: Oxford University Press)
[23] Karki B B, Ackland G J and Crain J 1997 J. Phys: Condens. Matter. 9 8579
[24] Frantsevich I N, Voronov F F and Bokuta S A 1983 Elastic Constants and Elastic Moduli of Metals and Insulators, ed. I N Frantsevich (Kiev: Naukova Dumka) pp. 60-180
[25] Pugh S F 1954 Philos. Mag. 45 823
[1] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[4] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[5] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[6] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[7] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[8] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[9] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[10] First-principles study on β-GeS monolayer as high performance electrode material for alkali metal ion batteries
Meiqian Wan(万美茜), Zhongyong Zhang(张忠勇), Shangquan Zhao(赵尚泉), and Naigen Zhou(周耐根). Chin. Phys. B, 2022, 31(9): 096301.
[11] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[12] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[13] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[14] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
[15] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
No Suggested Reading articles found!