|
|
Post-annealing effect on the structural and mechanical properties of multiphase zirconia films deposited by a plasma focus device |
I. A. Khana, R. S. Rawatb, R. Ahmadc, M. A. K. Shahida |
a Department of Physics, Government College University, 38000 Faisalabad, Pakistan; b National Institute of Education, Nanyang Technological University, Singapore 637616, Singapore; c Department of Physics, GC University, 54000 Lahore, Pakistan |
|
|
Abstract Nanostructured multiphase zirconia films (MZFs) are deposited on Zr substrate by the irradiation of energetic oxygen ions emanated from a plasma focus device. The oxygen operating gas pressure of 1 mbar (1 bar=105 Pa) provides the most appropriate ion energy flux to deposit crystalline ZrO2 films. X-ray diffraction (XRD) patterns reveal the formation of polycrystalline ZrO2 films. The crystallite size (CS), crystal growth, and dislocation densities are attributed to increasing focus shots, sample axial distances, and working gas pressures. Phase and orientation transformations from t-ZrO2 to m-ZrO2 and c-ZrO2 are associated with increasing focus shots and continuous annealing. For lower (200 ℃) annealing temperature (AT), full width at half maximum (FWHM) of diffraction peak, CS, and dislocation density (δ) for (020) plane are found to be 0.494, 16.6 nm, and 3.63×10-3 nm-2 while for higher (400 ℃) AT, these parameters for (111) plane are found to be 0.388, 20.87 nm, and 2.29×10-3 nm-2, respectively. Scanning electron microscope (SEM) results demonstrate the formation of rounded grains with uniform distribution. The estimated values of atomic ratio (O/Zr) in ZrO2 films deposited for different axial distances (6 cm, 9 cm, and 12 cm) are found to be 2.1, 2.2, and 2.3, respectively. Fourier transform infrared (FTIR) analysis reveals that the bands appearing at 441 cm-1 and 480 cm-1 belong to m-ZrO2 and t-ZrO2 phases, respectively. Maximum microhardness (8.65±0.45 GPa) of ZrO2 film is ~ 6.7 times higher than the microhardness of virgin Zr.
|
Received: 27 March 2013
|
: |
73.50.Lw
|
(Thermoelectric effects)
|
|
68.60.Bs
|
(Mechanical and acoustical properties)
|
|
68.55.J-
|
(Morphology of films)
|
|
61.72.-y
|
(Defects and impurities in crystals; microstructure)
|
|
Fund:Project supported by the Higher Education Commission of Pakistan. |
Corresponding Authors: I. A. Khan
|
E-mail: ejaz_phd@yahoo.com
|
|
|
|
[1] |
Garvie R C, Hannink R H and Pascoe R T 1975 Nature 258 703
|
[2] |
Wilk G D, Wallace R M and Anthony J M 2001 J. Appl. Phys. 89 5243
|
[3] |
Wright P K and Evans A G 1999 Solid State Mater. Sci. 4 255
|
[4] |
Zhou X, Balachov I and Macdonald D D 1998 Corros. Sci. 40 1349
|
[5] |
Nguyen T and Djurado E 2001 Solid State Ion. 138 191
|
[6] |
Perkins C M, Triplett B B, Mclntyre P C, Saraswat K C, Haukka S and Tuominen M 2001 Appl. Phys. Lett. 78 2357
|
[7] |
Zhao X and Vanderbilt D 2002 Phys. Rev. B 65 075105
|
[8] |
Zhao X and Vanderbilt D 2005 Phys. Rev. B 71 085107
|
[9] |
Hwang S M, Lee S M, Park K, Lee M S, Joo J, Lim J H, Kim H, Yoon J J and Kim Y D 2011 Appl. Phys. Lett. 98 022903
|
[10] |
Panda D and Tseng T-Y 2013 Thin Solid Films 531 1
|
[11] |
Piconi C and Maccauro G 1999 Biomaterials 20 1
|
[12] |
Namavar F, Wang G, Cheung C L, Sabirianov R, Zeng X C, Mei W N, Bai J, Brewer J R, Haider H and Garvin K L 2007 Nanotechnology 18 415702
|
[13] |
Sattonnay G and Thome L 2006 J. Nucl. Mater. 348 223
|
[14] |
Chraska T, King A H and Berndt C C 2000 Mater. Sci. Eng. A 286 169
|
[15] |
Aguilar D H, Torres-Gonzalez L C, Torres-Martinez L M, Lopez T and Quintana P 2000 J. Solid State Chem. 158 349
|
[16] |
Lee S, Tou T Y, Moo S P, Eissa M A, Gholap A V, Kwek K W, Mulyodrono S, Smith A J, Suryadi S, Usada W and Zakaullah M 1988 Am. J. Phys. 56 62
|
[17] |
Ahmad R, Sadiq M, Hussain S, Shafiq M, Zakaullah M and Waheed A 2006 Rev. Sci. Instrum. 77 013504
|
[18] |
Bhuyan H, Favre M, Valderrama E, Chuaqui H and Wyndham E 2006 J. Phys. D: Appl. Phys. 39 3596
|
[19] |
Rawat R S, Srivastava M P, Tandon S and Mansingh A 1993 Phys. Rev. B 47 4858
|
[20] |
Rawat R S, Arun P, Videshwar A G, Lam Y L, Lee P, Liu M H, Lee S and Huan A C H 2000 Mater. Res. Bull. 35 477
|
[21] |
Rawat R S, Arun P, Videshwar A G, Lee P and Lee S 2004 J. Appl. Phys. 95 7725
|
[22] |
Borthakur T K, Sahu A, Mohanty S R, Nayak B B and Acharya B S 1999 Surf. Eng. 15 55
|
[23] |
Gupta R and Srivastava M P 2004 Plasma Sour. Sci. Technol. 13 371
|
[24] |
Kant C R, Srivastava M P and Rawat R S 1997 Phys. Lett. A 226 212
|
[25] |
Rawat R S, Lee P, White T, Ling L and Lee S 2001 Surf. Coat. Technol. 138 159
|
[26] |
Hassan M, Qayyum A, Ahmad R, Murtaza G and Zakaullah M 2007 J. Phys. D: Appl. Phys. 40 769
|
[27] |
Khan I A, Hassan M, Ahmad R, Qayyum A, Murtaza G, Zakaullah M and Rawat R S 2008 Thin Solid Films 516 8255
|
[28] |
Khan I A, Hassan M, Ahmad R, Murtaza G, Zakaullah M, Rawat R S and Lee P 2008 Int. J. Mod. Phys. B 22 3941
|
[29] |
Khan I A, Hassan M, Hussain T, Ahmad R, Zakaullah M and Rawat R S 2009 Appl. Surf. Sci. 255 6132
|
[30] |
Nayak B B, Acharya B S, Mohanty S R, Borthakur T K and Bhuyan H 2001 Surf. Coat. Technol. 145 8
|
[31] |
Ahmad R, Hassan M, Murtaza G, Akhter J I, Qayyum A, Waheed A and Zakaullah M 2006 Rad. Eff. Deff. Solids 161 121
|
[32] |
Choi P, Deeney C, Herold H and Wong C S 1990 Laser Part. Beams 8 469
|
[33] |
Sadowski M, Schmidt H and Herold H 1981 Phys. Lett. A 83 435
|
[34] |
Williamson G B and Smallman R C 1956 Philos. Mag. 1 34
|
[35] |
Wang X S, Wu Z C, Webb J F and Liu Z G 2003 Appl. Phys. A 77 561
|
[36] |
Khan Z R, Zulfequar M and Khan M S 2010 Mater. Sci. Eng. B 174 145
|
[37] |
Khan Z R, Khan Mohd Shoeb, Zulfequar M and Khan Mohd Shahid 2011 Mater. Sci. Appl. 2 340
|
[38] |
Kelly H, Lepone A and Marquez A 1998 IEEE Trans. Plasma Sci. 26 113
|
[39] |
Nunomura S, Koga K and Shitarani M 2005 Jpn. J. Appl. Phys. Part Ⅱ 44 L1509
|
[40] |
Lee S and Saw S H 2012 Phys. Plasmas 19 112703
|
[41] |
Sadiq M, Shafiq M, Ahmad W, Ahmad R and Zakaullah M 2006 Phys. Lett. A 352 150
|
[42] |
Tian G, Huang J, Wang T, He H and Shao J 2005 J. Appl. Surf. Sci. 239 201
|
[1] |
Ning Ru, Yu Wang, Hui-Juan Ma, Dong Hu, Li Zhang, Shang-Chun Fan. Flexible control of semiconductor laser with frequency tunable modulation transfer spectroscopy[J]. Chin. Phys. B, 2018, 27(7): 74201-074201. |
[2] |
Xin Lv, Guan-Ting Liu. Interaction between many parallel screw dislocations and a semi-infinite crack in a magnetoelectroelastic solid[J]. Chin. Phys. B, 2018, 27(7): 74601-074601. |
[3] |
Yuancong Zhong, Qilun Zhang, You Wei, Qi Li, Yong Zhang. Self-assembled monolayer modified copper(I) iodide hole transport layer for efficient polymer solar cells[J]. Chin. Phys. B, 2018, 27(7): 78802-078802. |
[4] |
Zheng-Peng Pang, Xin Wang, Jian Chen, Pan Yang, Yang Zhang, Yong-Hui Tian, Jian-Hong Yang. Non-monotonic dependence of current upon i-width in silicon p-i-n diodes[J]. Chin. Phys. B, 2018, 27(6): 66106-066106. |
[5] |
Jun-Ping Wang, Qing-Dong Chen, Sai-Lei Li, Yan-Jun Ji, Wen-Ying Mu, Wei-Wei Feng, Gao-Jie Zeng, You-Wen Liu, Er-Jun Liang. Phase transition and near-zero thermal expansion of Zr0.5Hf0.5VPO7[J]. Chin. Phys. B, 2018, 27(6): 66501-066501. |
[6] |
Huan-Cheng Yang, Kai Liu, Zhong-Yi Lu. Magnetic interactions in a proposed diluted magnetic semiconductor (Ba1-xKx)(Zn1-yMny)2P2[J]. Chin. Phys. B, 2018, 27(6): 67103-067103. |
[7] |
Hao-Miao Yu, Yun He. How to characterize capacitance of organic optoelectronic devices accurately[J]. Chin. Phys. B, 2018, 27(6): 67202-067202. |
[8] |
Man Zhang, Zhen-Gang Yang, Jin-Song Liu, Ke-Jia Wang, Jiao-Li Gong, Sheng-Lie Wang. Frequency response range of terahertz pulse coherent detection based on THz-induced time-resolved luminescence quenching[J]. Chin. Phys. B, 2018, 27(6): 60204-060204. |
[9] |
Yan-Chao She, Zhao Wei, Kai-Wu Luo, Yong Li, Yun Zhang, Wei-Xi Zhang. Electronic and magnetic properties of semihydrogenated, fully hydrogenated monolayer and bilayer MoN2 sheets[J]. Chin. Phys. B, 2018, 27(6): 60306-060306. |
[10] |
Ming-Jiang Zhang, Ya-Nan Niu, Tong Zhao, Jian-Zhong Zhang, Yi Liu, Yu-Hang Xu, Jie Meng, Yun-Cai Wang, An-Bang Wang. Chaos generation by a hybrid integrated chaotic semiconductor laser[J]. Chin. Phys. B, 2018, 27(5): 50502-050502. |
[11] |
Xiao-bo Geng, Jun-xing Pan, Jin-jun Zhang, Min-na Sun, Jian-yong Cen. Phase transition of a diblock copolymer and homopolymer hybrid system induced by different properties of nanorods[J]. Chin. Phys. B, 2018, 27(5): 58102-058102. |
[12] |
Su-Zhen Luan, Yu-Cheng Wang, Yin-Tao Liu, Ren-Xu Jia. Effect of depositing PCBM on perovskite-based metal-oxide-semiconductor field effect transistors[J]. Chin. Phys. B, 2018, 27(4): 47208-047208. |
[13] |
Lian Liu, Wen-Xiang Chen, Rui-Qiang Wang, Liang-Bin Hu. Influence of spin-orbit coupling on spin-polarized electronic transport in magnetic semiconductor nanowires with nanosized sharp domain walls[J]. Chin. Phys. B, 2018, 27(4): 47201-047201. |
[14] |
Jia-Kai Li, Li-Kun Ai, Ming Qi, An-Hui Xu, Shu-Min Wang. Effects of growth conditions on optical quality and surface morphology of InGaAsBi[J]. Chin. Phys. B, 2018, 27(4): 48101-048101. |
[15] |
Gang Fang, Nan Sheng, Tan Jin, Yousheng Xu, Hai Sun, Jun Yao, Wei Zhuang, Haiping Fang. Hydrophobic nanochannel self-assembled by amphipathic Janus particles confined in aqueous nano-space[J]. Chin. Phys. B, 2018, 27(3): 30505-030505. |
|
|
|
|