Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(11): 116106    DOI: 10.1088/1674-1056/22/11/116106
Special Issue: TOPICAL REVIEW — Quantum information
TOPICAL REVIEW—Quantum information Prev   Next  

Graphene-like physics in optical lattices

Mei Feng (梅锋)a, Zhang Dan-Wei (张丹伟)b, Zhu Shi-Liang (朱诗亮)a
a National Laboratory of Solid State Microstructures and School of Physics, Nanjing University, Nanjing 210093, China;
b Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
Abstract  Graphene has attracted enormous attention over the past years in condensed matter physics. The most interesting feature of graphene is that its low-energy excitations are relativistic Dirac fermions. Such feature is the origin of many topological properties in graphene-like physics. On the other hand, ultracold quantum gas trapped in an optical lattice has become a unique setting for quantum simulation of condensed matter physics. Here, we mainly review our recent work on quantum simulation of graphene-like physics with ultracold atoms trapped in a honeycomb or square optical lattice, including the simulation of Dirac fermions and quantum Hall effect with and without Landau levels. We also present the related experimental advances.
Keywords:  graphene      Dirac fermions      quantum Hall effect      optical lattice  
Received:  28 September 2013      Revised:  18 October 2013      Accepted manuscript online: 
PACS:  61.48.Gh (Structure of graphene)  
  73.43.-f (Quantum Hall effects)  
  37.10.Jk (Atoms in optical lattices)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11125417), the State Key Program for Basic Research of China (Grant No. 2011CB922104), and the PCSIRT. DWZ was also supported by the SRFGS of SCNU.
Corresponding Authors:  Zhu Shi-Liang     E-mail:  slzhunju@163.com

Cite this article: 

Mei Feng (梅锋), Zhang Dan-Wei (张丹伟), Zhu Shi-Liang (朱诗亮) Graphene-like physics in optical lattices 2013 Chin. Phys. B 22 116106

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
[3] Geim A K 2009 Science 324 1530
[4] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[5] Goerbig M O 2011 Rev. Mod. Phys. 83 1193
[6] Katsnelson M I, Novoselov K S and Geim A K 2006 Nat. Phys. 2 620
[7] Zheng Y and Ando T 2002 Phys. Rev. B 65 245420
[8] Gusynin V P and Sharapov S G 2005 Phys. Rev. Lett. 95 146801
[9] Zhang Y, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201
[10] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197
[11] Haldane F D M 1988 Phys. Rev. Lett. 61 20015
[12] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[13] Lewenstein M, Sanpera A, Ahufinger V, Damski B, Sen A and Sen U 2007 Adv. Phys. 56 243
[14] Bloch I, Dalibard J and Zwerger W 2008 Rev. Mod. Phys. 80 885
[15] Dalibard J, Gerbier F, Juzeliunas G and Ohberg P 2011 Rev. Mod. Phys. 83 1523
[16] Zhang D W, Wang Z D and Zhu S L 2012 Front. Phys. 7 31
[17] Tarruell L, Greif D, Uehlinger T, Jotzu G and Esslinger T 2012 Nature 483 302
[18] Zhu S L, Wang B G and Duan L M 2007 Phys. Rev. Lett. 98 260402
[19] Lin Y J, Compton R L, Garcia K J, Porto J V and Spielman I B 2009 Nature 462 628
[20] Lin Y J, Jimenez-Garcia K and Spielman I B 2011 Nature 471 83
[21] Aidelsburger M, Atala M, Nascimb’ene M, Troztky S, Chen Y A and Bloch I 2011 Phys. Rev. Lett. 107 255301
[22] Zhang J Y, Ji S C, Chen Z, Zhang L, Du Z D, Yan B, Pan G S, Zhao B, Deng Y J, Zhai H, Chen S and Pan J W 2012 Phys. Rev. Lett. 109 115301
[23] Wang P, Yu Z Q, Fu Z, Miao J, Huang L, Chai S, Zhai H and Zhang J 2012 Phys. Rev. Lett. 109 095301
[24] Cheuk L W, Sommer A T, Hadzibabic Z, Yefsah T, Bakr W S and Zwierlein M W 2012 Phys. Rev. Lett. 109 095302
[25] LeBlanc L J, Williams R A, Beeler M C, Perry A R and Spielman I B 2012 Phys. Rev. Lett. 108 225303
[26] Struck J, Ölschlaġer C, Weinberg M, Hauke P, Simonet J, Eckardt A, Lewenstein M, Sengstock K and Windpassinger P 2012 Phys. Rev. Lett. 108 225304
[27] Struck J, Weinberg M, Ölschläger C, Windpassinger P, Simonet J, Sengstock K, Höpner R, Hauke P, Eckardt A, Lewenstein M and Mathey L 2013 Nat. Phys.
[28] Aidelsburger M, Atala M, Lohse M, Barreiro J T, Paredes B and Bloch I arXiv:1308.0321
[29] Miyake H, Sivloglou G A, Kennedy C J, Burton W C and Ketterle W arXiv:1308.1431
[30] LeBlanc L J, Beeler M C, Jimenez-Garcia K, Perry A R, Sugawa S, Williams R A and Spielman I B 2013 New J. Phys. 15 073011
[31] Qu C, Hamner C, Gong M, Zhang C and Engels P 2013 Phys. Rev. A 88 021604
[32] Zhu S L, Fu H, Wu C J, Zhang S C and Duan L M 2006 Phys. Rev. Lett. 97 240401
[33] Liu X J, Liu X, Kwek L C and Oh C H 2007 Phys. Rev. Lett. 98 026602
[34] Beeler M C, Williams R A, Jimenez-Garcia K, LeBlanc L J, Perry A R and Spielman I B 2013 Nature 498 201
[35] deGail R, Fuchs J N, Goerbig M O, Piechon F and Montambaux G 2012 Physica B 407 1948
[36] Lee K L, Gremaud B, Han R, Englert B G and Miniatura C 2009 Phys. Rev. A 80 043411
[37] Block J K and Nygaard N 2009 Phys. Rev. A 80 043411
[38] Zhao E and Paramekanti A 2006 Phys. Rev. Lett. 97 230404
[39] Chen Z and Wu B 2011 Phys. Rev. Lett. 107 065301
[40] Sun F, Yu X L, Ye J, Fan H and Liu W M 2013 Sci Rep. 3 2119
[41] Poletti D, Miniatura C and Gremaud B 2011 Europhys. Lett. 93 37008
[42] Bermudez A, Goldman N, Kubasiak A, Lewenstein M and Martin-Delgado M A 2010 New J. Phys. 12 033041
[43] Wu C and Sarma S D 2008 Phys. Rev. B 77 235107
[44] Gomes K K, Mar W, Ko W, Guinea F and Manoharan H C 2012 Nature 483 306
[45] Bellec M, Kuhl U, Montambaux G and Mortessagne F 2013 Phys. Rev. Lett. 110 033902
[46] Koghee S, Lim L K, Goerbig M O and Smith C M 2012 Phys. Rev. A 85 023637
[47] Lifshitz I M 1960 Sov. Phys. JETP 11 1130
[48] Bercioux D, Urban D F, Grabert H and Häsler W 2009 Phys. Rev. A 80 063603
[49] Bercioux D, Goldman N and Urban D F 2011 Phys. Rev. A 83 023609
[50] Shen R, Shao L B, Wang B and Xing D Y 2010 Phys. Rev. B 81 041410
[51] Satija I I, Dakin D C, Vaishnav J Y and Clark C W 2008 Phys. Rev. A 77 043410
[52] Hou J M, Yang W X and Liu X J 2009 Phys. Rev. A 79 043621
[53] Lim L K, Smith C M and Hemmerich A 2008 Phys. Rev. Lett. 100 130402
[54] Lim L K, Lazarides A, Hemmerich A and Smith C M 2009 Europhys. Lett. 88 36001
[55] Lim L K, Hemmerich A and Smith C M 2010 Phys. Rev. A 81 023404
[56] Goldman N, Kubasiak A, Bermudez A, Gaspard P, Lewenstein M and Martin-Delgado M A 2009 Phys. Rev. Lett. 103 035301
[57] Liu X J, Liu X, Wu C and Sinova J 2010 Phys. Rev. A 81 033622
[58] Kennett M P, Komeilizadeh N, Kaveh K and Smith P M 2011 Phys. Rev. A 83 053636
[59] Yang M and Zhu S L 2010 Phys. Rev. A 82 064102
[60] Bermudez A, Mazza L, Rizzi M, Goldman N, Lewenstein M and Martin-Delgado M A 2010 Phys. Rev. Lett. 105 190404
[61] Lepori L, Mussardo G and Trombettoni A 2010 Europhys. Lett. 92 50003
[62] Vaishnav J Y and Clark C W 2008 Phys. Rev. Lett. 100 153002
[63] Juzeliūnas G, Ruseckas J, Lindberg M, Santos L and Öhberg P 2008 Phys. Rev. A 77 011802
[64] Merkl M, Zimmer F E and Öhberg P 2008 Europhys. Lett. 83 54002
[65] Zhu S L, Zhang D W and Wang Z D 2009 Phys. Rev. Lett. 102 210403
[66] Song J J and Foreman B A 2009 Phys. Rev. A 80 045602
[67] Zhang Q, Gong J and Oh C H 2010 Phys. Rev. A 81 023608
[68] Zhu S L, Shao L B, Wang Z D and Duan L M 2011 Phys. Rev. Lett. 106 100404
[69] Zhang D W, Xue Z Y, Yan H, Wang Z D and Zhu S L 2012 Phys. Rev. A 85 013628
[70] Zhang D W, Shao L B, Xue Z Y, Yan H, Wang Z D and Zhu S L 2012 Phys. Rev. A 86 063616
[71] Zwierlein M W, Schirotzek A, Schunck C H and Ketterle W 2006 Nature 311 492
[72] Partridge G B, Li W, Kamar R I, Liao Y and Hulet R G 2006 Nature 311 503
[73] Stamper-Kurn D M, Chikkatur A P, Gorlitz A, Inouye S, Gupta S, Pritchard D E and Ketterle W 1999 Phys. Rev. Lett. 83 2876
[74] Kohl M, Moritz H, Stoferle T, Günter K and Esslinger T 2005 Phys. Rev. Lett. 94 080403
[75] Mei F, Zhu S L, Feng X L, Zhang Z M and Oh C H 2011 Phys. Rev. A 84 023662
[76] Jaksch D and Zoller P 2003 New J. Phys. 5 56
[77] Watanabe H, Hatsugai Y and Aoki H 2010 Phys. Rev. B 82 241403
[78] Shao L B, Zhu S L, Sheng L, Xing D Y and Wang Z D 2008 Phys. Rev. Lett. 101 246801
[79] Umucalilar R O, Zhai H and Oktel M O 2008 Phys. Rev. Lett. 100 070402
[80] Mei F, Zhu S L, Zhang Z M, Oh C H and Goldman N 2012 Phys. Rev. A 85 013638
[81] Wu C J 2008 Phys. Rev. Lett. 101 186807
[82] Zhang M, Hsiang-hsuan H, Zhang C and Wu C 2011 Phys. Rev. A 83 023615
[83] Alba E, Fernandez-Gonzalvo X, Mur-Petit J, Pachos J K and Garcia-Ripoll J J 2011 Phys. Rev. Lett. 107 235301
[84] Goldman N, Anisimovas E, Gerbier F, Ohberg P, Spielman I B and Juzeliunas G 2013 New J. Phys. 15 013205
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[3] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[4] Precise measurement of 171Yb magnetic constants for 1S03P0 clock transition
Ang Zhang(张昂), Congcong Tian(田聪聪), Qiang Zhu(朱强), Bing Wang(王兵), Dezhi Xiong(熊德智), Zhuanxian Xiong(熊转贤), Lingxiang He(贺凌翔), and Baolong Lyu(吕宝龙). Chin. Phys. B, 2023, 32(2): 020601.
[5] Theoretical calculations on Landé $g$-factors and quadratic Zeeman shift coefficients of $n$s$n$p $^{3} {P}^{o}_{0}$ clock states in Mg and Cd optical lattice clocks
Benquan Lu(卢本全) and Hong Chang(常宏). Chin. Phys. B, 2023, 32(1): 013101.
[6] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[7] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[8] Effective sideband cooling in an ytterbium optical lattice clock
Jin-Qi Wang(王进起), Ang Zhang(张昂), Cong-Cong Tian(田聪聪), Ni Yin(殷妮), Qiang Zhu(朱强), Bing Wang(王兵), Zhuan-Xian Xiong(熊转贤), Ling-Xiang He(贺凌翔), and Bao-Long Lv(吕宝龙). Chin. Phys. B, 2022, 31(9): 090601.
[9] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[10] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[11] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[12] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[13] Longitudinal conductivity in ABC-stacked trilayer graphene under irradiating of linearly polarized light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏), and Jie Yang(杨杰). Chin. Phys. B, 2022, 31(8): 088102.
[14] Superfluid to Mott-insulator transition in a one-dimensional optical lattice
Wenliang Liu(刘文良), Ningxuan Zheng(郑宁宣), Jun Jian(蹇君), Li Tian(田丽), Jizhou Wu(武寄洲), Yuqing Li(李玉清), Yongming Fu(付永明), Peng Li(李鹏), Vladimir Sovkov, Jie Ma(马杰), Liantuan Xiao(肖连团), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(7): 073702.
[15] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
No Suggested Reading articles found!