Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(9): 097304    DOI: 10.1088/1674-1056/21/9/097304
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effect of surface morphology on the electron mobility of epitaxial graphene grown on 0° and 8° Si-terminated 4H-SiC substrates

Li Jia (李佳)a, Wang Li (王丽)b, Feng Zhi-Hong (冯志红)a, Yu Cui (蔚翠)a, Liu Qing-Bin (刘庆彬)a, Dun Shao-Bo (敦少博)a, Cai Shu-Jun (蔡树军)a
a Science and Technology on ASIC Lab., Hebei Semiconductor Research Institute, Shijiazhuang 050051, China;
b Information Center of Science and Technology, Beijing 100040, China
Abstract  Graphene with different surface morphologies were fabricated on 8°-off-axis and on-axis 4H-SiC(0001) substrates by high-temperature thermal decomposition. Graphene grown on Si-terminated 8°-off-axis 4H-SiC(0001) shows lower Hall mobility than the counterpart of on-axis SiC substrates. The terrace width is not responsible for different electron mobility of graphene grown on different substrates, as the terrace width is much larger than the mean free path of the electrons. The electron mobility of graphene remains unchanged with increasing terrace width on Si-terminated on-axis SiC. The interface scattering and short-range scattering are the main factors affecting the mobility of epitaxial graphene. After the optimization of the growth process, the Hall mobility of the graphene reaches 1770 cm2/V · s at a carrier density of 9.8.× 1012 cm-2. Wafer-size graphene was successfully achieved with an excellent double-layer thickness uniformity of 89.7% on a 3-inch SiC substrate.
Keywords:  graphene      morphology      Hall mobility      3-inch SiC substrate  
Received:  30 January 2012      Revised:  19 March 2012      Accepted manuscript online: 
PACS:  73.63.-b (Electronic transport in nanoscale materials and structures)  
  72.80.Vp (Electronic transport in graphene)  
Corresponding Authors:  Feng Zhi-Hong     E-mail:  blueledviet@yahoo.com.cn

Cite this article: 

Li Jia (李佳), Wang Li (王丽), Feng Zhi-Hong (冯志红), Yu Cui (蔚翠), Liu Qing-Bin (刘庆彬), Dun Shao-Bo (敦少博), Cai Shu-Jun (蔡树军) Effect of surface morphology on the electron mobility of epitaxial graphene grown on 0° and 8° Si-terminated 4H-SiC substrates 2012 Chin. Phys. B 21 097304

[1] Geim A K and Novoselov K S 2007 Nature Mater. 6 183
[2] Lemme M C, Echtermeyer T J, Baus M and Kurz H 2007 Electron Dev. Lett. 28 282
[3] Zhang Y B, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201
[4] Berger C, Song Z, Li X B, Wu X S, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov A N, Conrad E H, First P N and Heer W A 2006 Science 312 1191
[5] Xia F N, Farmer D B, Lin Y M and Avouris P 2010 Nano Lett. 10 715
[6] Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P and Stormer H L 2008 Solid State Commun. 146 351
[7] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[8] Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morzov S V and Geim A K 2005 Proc. Natl. Acad. Sci. 102 10451
[9] Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y and Hong B H 2009 Nature 457 706
[10] Li X S, Cai W W, An J, Nah J, Yang D X, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L and Ruoff R S 2009 Science 324 1312
[11] McArdle T J, Chu J O, Zhu Y, Liu Z H, Krishnan M, Breslin C M, Dimitrakopoulos C, Wisnieff R and Grill A 2011 Appl. Phys. Lett. 98 132108
[12] Emtsev K V, Bostwick A, Horn K, Jobst J, Kellogg G L, Ley L, McChesney J L, Ohta T, Reshanov S A, Röhrl J, Rotenberg E, Schmid A K, Waldmann D, Weber H B and Seyller T 2009 Nature Mater. 8 203
[13] Hass J, Varchon F, Millán-Otoya J E, Sprinkle M, Sharma N, de Heer W A, Berger C, First P N, Magaud L and Conrad E H 2008 Phys. Rev. Lett. 100 125504
[14] Lin Y M, Dimitrakopoulos C, Jenkins K A, Farmer D B, Chiu H Y and Avouris P H 2010 Science 327 662
[15] Luxmi, Fisher P J, Srivastava N and Feenstra R M 2009 Appl. Phys. Lett. 95 073101
[16] Robinson J A, LaBella M, Trumbull K A, Weng X J, Cavelero R, Daniels T, Hughes Z, Hollander M, Fanton M and Snyder D 2010 ACS Nano 4 2667
[17] Berger C, Song Z M, Li X B, Wu X S, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov A N, Conrad E H, First P N and Heer W A 2006 Science 312 1191
[18] Dimitrakopoulos C, Grill A, McArdle T J, Liu Z H, Wisnieff R and Antoniadis D A 2011 Appl. Phys. Lett. 98 222105
[19] Hannon J B and Tromp R M 2008 Phys. Rev. B 77 241404
[20] Sharp J W, Poon S J and Goldsmid H J 2001 Phys. Status Solidi A 187 507
[21] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[22] Tanabe S, Sekine Y, Kageshima H, Nagase M and Hibino H 2011 Phys. Rev. B 84 115458
[23] Ni Z H, Wang Y Y, Yu T and Shen Z X 2008 Nano Res. 1 273
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Tuning the particle size, physical properties, and photocatalytic activity of Ag3PO4 materials by changing the Ag+/PO43- ratio
Hung N M, Oanh L T M, Chung D P, Thang D V, Mai V T, Hang L T, and Minh N V. Chin. Phys. B, 2023, 32(3): 038102.
[3] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[4] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[5] Surface structure modification of ReSe2 nanosheets via carbon ion irradiation
Mei Qiao(乔梅), Tie-Jun Wang(王铁军), Yong Liu(刘泳), Tao Liu(刘涛), Shan Liu(刘珊), and Shi-Cai Xu(许士才). Chin. Phys. B, 2023, 32(2): 026101.
[6] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[7] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[8] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[9] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[10] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[11] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[12] Longitudinal conductivity in ABC-stacked trilayer graphene under irradiating of linearly polarized light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏), and Jie Yang(杨杰). Chin. Phys. B, 2022, 31(8): 088102.
[13] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[14] Thermionic electron emission in the 1D edge-to-edge limit
Tongyao Zhang(张桐耀), Hanwen Wang(王汉文), Xiuxin Xia(夏秀鑫), Chengbing Qin(秦成兵), and Xiaoxi Li(李小茜). Chin. Phys. B, 2022, 31(5): 058504.
[15] Photoelectrochemical activity of ZnO:Ag/rGO photo-anodes synthesized by two-steps sol-gel method
D Ben Jemia, M Karyaoui, M A Wederni, A Bardaoui, M V Martinez-Huerta, M Amlouk, and R Chtourou. Chin. Phys. B, 2022, 31(5): 058201.
No Suggested Reading articles found!