Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(11): 114204    DOI: 10.1088/1674-1056/21/11/114204

Saturation of biphoton generation near atomic resonance

Chen Peng, Qian Jun, Hu Zheng-Feng, Wang Yu-Zhu
Key Laboratory for Quantum Optics, Center for Cold Atom Physics, Shanghai Institute of Optics and Fine Mechanics,Chinese Academy of Sciences, Shanghai 201800, China
Abstract  We have numerically investigated the biphoton generation rate as a function of several parameters in the spontaneous four wave mixing in cold atoms. It has been found that the biphoton generation rate can easily reach saturation with the intensity of the coupling laser increasing. The saturation intensity is mainly dependent on the dephasing rate of the ground states, unrelated to the pumping laser. It implies that though the biphoton waveform can be manipulated by the coupling laser, the generation rate of the biphoton cannot increase markedly after the saturation. The saturation effect also suggests that there is an optimal coupling laser for obtaining the largest biphoton generation rate with the sufficiently long coherence time.
Keywords:  two-photon generation      four wave mixing      cold atoms     
Received:  05 March 2012      Published:  01 October 2012
PACS:  42.50.Dv (Quantum state engineering and measurements)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10804115), the National Basic Research Program of China (Grant Nos. 2006CB921202 and 2011CB921504), the Knowledge Innovation Project of Chinese Academy of Sciences, and the Shanghai Committee of Science and Technology, China (Grant No. 09DJ1400700).
Corresponding Authors:  Wang Yu-Zhu     E-mail:

Cite this article: 

Chen Peng, Qian Jun, Hu Zheng-Feng, Wang Yu-Zhu Saturation of biphoton generation near atomic resonance 2012 Chin. Phys. B 21 114204

[1] Balic V, Danielle A B, Kolchin P, Yin G Y and Harris S E 2005 Phys. Rev. Lett. 94 183601
[2] Kolchin P, Du S W, Belthangady C, Yin G Y and Harris S E 2006 Phys. Rev. Lett. 97 113602
[3] Shengwang D, Kolchin P, Belthangady C, Yin G Y and Harris S E 2008 Phys. Rev. Lett. 100 183603
[4] Yan H, Zhang S C, Chen J F, Loy M M T, Wong G K L and Du S W 2011 Phys. Rev. Lett. 106 033601
[5] Chen P, Zhou S Y, Xu Z, Duan Y F, Cui G D and Wang Y Z 2011 Chin. Phys. Lett. 28 074214
[6] Knill E, Laflamme R and Milburn G J 2001 Nature 409 46
[7] Briegel H J, Dur W, Cirac J I and Zoller P 1998 Phys. Rev. Lett. 81 5932
[8] Halder M, Beveratos A, Gisin N, Scarani V, Simon C and Zbinden H 2007 Nature Phys. 10 692
[9] Du S W, Wen J M and Rubin M H 2008 JOSAB 25 pC98
[10] Wen J M, Du S W and Rubin M H 2007 Phys. Rev. A 76 013825
[11] Kang H, Hernandez G and Zhu Y F 2004 Phys. Rev. A 70 061804
[12] Wang G, Len L, Qu Y, Xue Y, Wu J H and Gao J Y 2011 Opt. Express 19 21614
[13] Braje D A, Balic V, Goda S, Yin G Y and Harris S E 2004 Phys. Rev. Lett. 93 183601
[14] Kolchin P 2007 Phys. Rev. A 75 033814
[15] Liu Y, Wu J H, Shi B S and Guo G C 2012 Chin. Phys. Lett. 29 024205
[16] Zhang S C, Zhou S Y, Loy M M T, Wong G K L and Du S W 2011 Opt. Lett. 36 4530
[1] Simulation of anyons by cold atoms with induced electric dipole moment
Jian Jing, Yao-Yao Ma, Qiu-Yue Zhang, Qing Wang, Shi-Hai Dong. Chin. Phys. B, 2020, 29(8): 080303.
[2] Enhancement of the photoassociation of ultracold atoms via a non-resonant magnetic field
Ji-Zhou Wu, Yu-Qing Li, Wen-Liang Liu, Peng Li, Xiao-Feng Wang, Peng Chen, Jie Ma, Lian-Tuan Xiao, Suo-Tang Jia. Chin. Phys. B, 2020, 29(8): 083303.
[3] Generating two-dimensional quantum gases with high stability
Bo Xiao, Xuan-Kai Wang, Yong-Guang Zheng, Yu-Meng Yang, Wei-Yong Zhang, Guo-Xian Su, Meng-Da Li, Xiao Jiang, Zhen-Sheng Yuan. Chin. Phys. B, 2020, 29(7): 076701.
[4] Demonstration of a cold atom beam splitter on atom chip
Xiaojun Jiang, Xiaolin Li, Haichao Zhang, Yuzhu Wang. Chin. Phys. B, 2016, 25(8): 080311.
[5] Electromagnetically induced transparency in a Zeeman-sublevels Λ-system of cold 87Rb atoms in free space
Xiaojun Jiang, Haichao Zhang, Yuzhu Wang. Chin. Phys. B, 2016, 25(3): 034204.
[6] Fast thermometry for trapped atoms using recoil-induced resonance
Zhao Yan-Ting, Su Dian-Qiang, Ji Zhong-Hua, Zhang Hong-Shan, Xiao Lian-Tuan, Jia Suo-Tang. Chin. Phys. B, 2015, 24(9): 093701.
[7] Oscillation of the spin-currents of cold atoms on a ring due to light-induced spin-orbit coupling
Xie Wen-Fang, He Yan-Zhang, Bao Cheng-Guang. Chin. Phys. B, 2015, 24(6): 060305.
[8] Comparison of two absorption imaging methods to detect cold atoms in magnetic trap
Wang Yan, Hu Zhao-Hui, Qi Lu. Chin. Phys. B, 2015, 24(2): 024203.
[9] Photostop of iodine atoms from electrically oriented ICl molecules
Bao Da-Xiao, Deng Lian-Zhong, Xu Liang, Yin Jian-Ping. Chin. Phys. B, 2015, 24(11): 113702.
[10] Systematically investigating the polarization gradient cooling in an optical molasses of ultracold cesium atoms
Ji Zhong-Hua, Yuan Jin-Peng, Zhao Yan-Ting, Chang Xue-Fang, Xiao Lian-Tuan, Jia Suo-Tang. Chin. Phys. B, 2014, 23(11): 113702.
[11] Nanoscale guiding for cold atoms based on surface plasmons alongtips of metallic wedges
Wang Zheng-Ling, Tang Wei-Min, Zhou Ming, Gao Chuan-Yu. Chin. Phys. B, 2013, 22(7): 073701.
[12] Production of 87Rb Bose-Einstein condensates in a hybrid trap
Duan Ya-Fan, Jiang Bo-Nan, Sun Jian-Fang, Liu Kang-Kang, Xu Zhen, Wang Yu-Zhu. Chin. Phys. B, 2013, 22(5): 056701.
[13] Optimal transport of cold atoms by modulating the velocity of traps
Han Jing-Shan, Xu Xin-Ping, Zhang Hai-Chao, Wang Yu-Zhu. Chin. Phys. B, 2013, 22(2): 023702.
[14] Quantum phase transitions of fermionic atoms in an anisotropic triangular optical lattice
Bao An, Chen Yao-Hua, Zhang Xiao-Zhong. Chin. Phys. B, 2013, 22(11): 110309.
[15] Dependence of loading time on control parameters in a standard vapour–loaded magneto–optical trap
Zhang Yi-Chi, Wu Ji-Zhou, Li Yu-Qing, Ma Jie, Wang Li-Rong, Zhao Yan-Ting, Xiao Lian-Tuan, Jia Suo-Tang. Chin. Phys. B, 2011, 20(12): 123701.
No Suggested Reading articles found!