Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(10): 100202    DOI: 10.1088/1674-1056/21/10/100202
GENERAL Prev   Next  

Hamilton formalism and Noether symmetry for mechanico–electrical systems with fractional derivatives

Zhang Shi-Hua (张世华)a, Chen Ben-Yong (陈本永)a, Fu Jing-Li (傅景礼)b
a Faculty of Mechanical-Engineering & Automation, Zhejiang Sci-Tech University, Hangzhou 310018, China;
b Institute of Mathematical Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China
Abstract  This paper presents extensions to the traditional calculus of variations for mechanico-electrical systems containing fractional derivatives. The Euler-Lagrange equations and the Hamilton formalism of the mechanico-electrical systems with fractional derivatives are established. The definition and the criteria for the fractional generalized Noether quasi-symmetry are presented. Furthermore, the fractional Noether theorem and conseved quantities of the systems are obtained by virtue of the invariance of the Hamiltonian action under the infinitesimal transformations. An example is presented to illustrate the application of the results.
Keywords:  fractional derivative      mechanico-electrical system      Noether symmetry      Hamiltonian formulation  
Received:  04 March 2012      Revised:  23 April 2012      Accepted manuscript online: 
PACS:  02.20.-a (Group theory)  
  11.10.Ef (Lagrangian and Hamiltonian approach)  
  03.20.+I  
  11.30.-j (Symmetry and conservation laws)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11072218 and 60575055).
Corresponding Authors:  Fu Jing-Li     E-mail:  sqfujngli@163.com

Cite this article: 

Zhang Shi-Hua (张世华), Chen Ben-Yong (陈本永), Fu Jing-Li (傅景礼) Hamilton formalism and Noether symmetry for mechanico–electrical systems with fractional derivatives 2012 Chin. Phys. B 21 100202

[1] Podlubny I 1999 Fractional Differential Equations (New York: Academic Press)
[2] Hilfer R 2000 Applications of Fractional Calculus in Physics (Singapore, New Jersey, London, and Hong Kong: World Scientific)
[3] Zaslavsky G M 2002 Phys. Rep. 371 461
[4] Agrawal O P 2004 Nonlinear Dyn. 38 323
[5] Tarasov V E and Zaslavsky G M 2005 Hamilton Chaos and Fractional Dynamics (Oxford: Oxford University Press)
[6] Magin R L and Petrás I 2011 Commun. Nonlinear Sci. Numer. Simul. 16 4588
[7] Momeni H R and Dadras S 2011 Commun. Nonlinear Sci. Numer. Simul. 17 367
[8] Tenreiro Machado J A 2011 Commun. Nonlinear Sci. Numer. Simul. 16 4596
[9] Lazo M J 2011 Phys. Lett. A 375 3541
[10] Oustaloup A, Moreau X and Nouillant M 1996 Control Eng. Practice 4 1101
[11] Podlubny I 1994 Slovak Academy of Science, Institute of Experimental Physics UEF-03-94
[12] Podlubny I 1999 IEEE Trans. Autom. Control 44 208
[13] Lurie B J 1994 Three-Parameter Tunable Tilt-Integral Derivative (TID) Controller US Patent 5371670
[14] Riewe F 1996 Phys. Rev. E 53 1890
[15] Riewe F 1997 Phys. Rev. E 55 3581
[16] Agrawal O P 2002 J. Math. Anal. Appl. 272 368
[17] Rabei E M, Nawaflsh K I and Hijjawi R S 2007 J. Math. Anal. Appl. 327 891
[18] Zhou S, 2011 Sci. China G: Phys. Mech. Astron. 54 1847
[19] Bluman G W and Kumei S 1989 Symmetries and Differential Equations (Berlin, New York: Springer)
[20] Mei F X 1999 Applications of Lei Group and Lie Algebra to Constrained Mechanics Systems (Beijing: Science Press) (in Chinese)
[21] Torres D F M, 2002 Eur. J. Control 8 56
[22] Torres D F M 2004 J. Math. Sci. 120 1032
[23] Fu J L and Chen L Q 2003 Phys. Lett. A 317 255
[24] Fu J L, Chen L Q and Bai J H 2003 Chin. Phys. 12 695
[25] Chen X W, Zhao Y H and Li Y M 2009 Chin. Phys. B 18 3139
[26] Zhang Y 2011 Chin. Phys. B 20 034502
[27] Liu C, Mei F X and Guo Y X 2009 Chin. Phys. B 18 395
[28] Liu X W, Li Y C and Xia L L 2011 Chin. Phys. B 20 070203
[29] Ge W K and Zhang Y 2011 Acta Phys. Sin. 60 050202 (in Chinese)
[30] Lü H S, Zhang H B and Gu S L 2009 Chin. Phys. B 18 3135
[31] Li Y, Fang J H and Zhang K J 2011 Chin. Phys. B 20 030301
[32] Cai J L and Mei F X 2008 Acta Phys. Sin. 57 5369 (in Chinese)
[33] Fu J L and Chen L Q 2004 Phys. Lett. A 331 138
[34] Fu J L and Chen B Y 2008 Chin. Phys. B 17 3942
[35] Fu J L, Chen L Q and Chen B Y 2010 Sci. China G: Phys. Mech. Astron. 53 1687
[36] Oldham K B and Spanier J 1974 The Fractional Calculus (New York: Academic Press)
[37] Miller K S and Ross B 1993 An Introduction to the Fractional Calculus and Fractional Differential Equational (New York: John Wiley & Sons)
[38] Butzer P L and Westphal U 2000 An Introduction to Fractional Calculus, in Applications of Fractional Calculus in Physics, ed. Hilfer R (New Jersey: World Scientific)
[39] Baleanu D and Muslih S 2005 Phys Scr. 27 105
[40] Zhou S 2010 Chin. Phys. B 19 120301
[1] Conformable fractional heat equation with fractional translation symmetry in both time and space
W S Chung, A Gungor, J Kříž, B C Lütfüoǧlu, and H Hassanabadi. Chin. Phys. B, 2023, 32(4): 040202.
[2] A local refinement purely meshless scheme for time fractional nonlinear Schrödinger equation in irregular geometry region
Tao Jiang(蒋涛), Rong-Rong Jiang(蒋戎戎), Jin-Jing Huang(黄金晶), Jiu Ding(丁玖), and Jin-Lian Ren(任金莲). Chin. Phys. B, 2021, 30(2): 020202.
[3] Stochastic bifurcations of generalized Duffing-van der Pol system with fractional derivative under colored noise
Wei Li(李伟), Mei-Ting Zhang(张美婷), Jun-Feng Zhao(赵俊锋). Chin. Phys. B, 2017, 26(9): 090501.
[4] Noether symmetry and conserved quantity for dynamical system with non-standard Lagrangians on time scales
Jing Song(宋静), Yi Zhang(张毅). Chin. Phys. B, 2017, 26(8): 084501.
[5] Stochastic response of van der Pol oscillator with two kinds of fractional derivatives under Gaussian white noise excitation
Yong-Ge Yang(杨勇歌), Wei Xu(徐伟), Ya-Hui Sun(孙亚辉), Xu-Dong Gu(谷旭东). Chin. Phys. B, 2016, 25(2): 020201.
[6] Non-Noether symmetries of Hamiltonian systems withconformable fractional derivatives
Lin-Li Wang (王琳莉) and Jing-Li Fu(傅景礼). Chin. Phys. B, 2016, 25(1): 014501.
[7] Response of a Duffing—Rayleigh system with a fractional derivative under Gaussian white noise excitation
Zhang Ran-Ran (张冉冉), Xu Wei (徐伟), Yang Gui-Dong (杨贵东), Han Qun (韩群). Chin. Phys. B, 2015, 24(2): 020204.
[8] Space–time fractional KdV–Burgers equation for dust acoustic shock waves in dusty plasma with non-thermal ions
Emad K. El-Shewy, Abeer A. Mahmoud, Ashraf M. Tawfik, Essam M. Abulwafa, Ahmed Elgarayhi. Chin. Phys. B, 2014, 23(7): 070505.
[9] Noether symmetry and conserved quantity for a Hamilton system with time delay
Jin Shi-Xin (金世欣), Zhang Yi (张毅). Chin. Phys. B, 2014, 23(5): 054501.
[10] Fractional cyclic integrals and Routh equations of fractional Lagrange system with combined Caputo derivatives
Wang Lin-Li (王琳莉), Fu Jing-Li (傅景礼). Chin. Phys. B, 2014, 23(12): 124501.
[11] Noether's theorems of a fractional Birkhoffian system within Riemann–Liouville derivatives
Zhou Yan (周燕), Zhang Yi (张毅). Chin. Phys. B, 2014, 23(12): 124502.
[12] Mei symmetry and conservation laws of discrete nonholonomic dynamical systems with regular and irregular lattices
Zhao Gang-Ling (赵纲领), Chen Li-Qun (陈立群), Fu Jing-Li (傅景礼), Hong Fang-Yu (洪方昱). Chin. Phys. B, 2013, 22(3): 030201.
[13] Noether symmetry and conserved quantities of the analytical dynamics of a Cosserat thin elastic rod
Wang Peng (王鹏), Xue Yun (薛纭), Liu Yu-Lu (刘宇陆). Chin. Phys. B, 2013, 22(10): 104503.
[14] Fractional Cattaneo heat equation in a semi-infinite medium
Xu Huan-Ying (续焕英), Qi Hai-Tao (齐海涛), Jiang Xiao-Yun (蒋晓芸). Chin. Phys. B, 2013, 22(1): 014401.
[15] Fractional differential equations of motion in terms of combined Riemann–Liouville derivatives
Zhang Yi (张毅). Chin. Phys. B, 2012, 21(8): 084502.
No Suggested Reading articles found!