Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(1): 010206    DOI: 10.1088/1674-1056/21/1/010206
GENERAL Prev   Next  

Element-free Galerkin (EFG) method for analysis of the time-fractional partial differential equations

Ge Hong-Xia(葛红霞)a), Liu Yong-Qing(刘永庆)a), and Cheng Rong-Jun(程荣军)b)
a Faculty of Science, Ningbo University, Ningbo 315211, China; b Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China
Abstract  The present paper deals with the numerical solution of time-fractional partial differential equations using the element-free Galerkin (EFG) method, which is based on the moving least-square approximation. Compared with numerical methods based on meshes, the EFG method for time-fractional partial differential equations needs only scattered nodes instead of meshing the domain of the problem. It neither requires element connectivity nor suffers much degradation in accuracy when nodal arrangements are very irregular. In this method, the first-order time derivative is replaced by the Caputo fractional derivative of order $\alpha$ (0<$\alpha$ ≤1). The Galerkin weak form is used to obtain the discrete equations, and the essential boundary conditions are enforced by the penalty method. Several numerical examples are presented and the results we obtained are in good agreement with the exact solutions.
Keywords:  element-free Galerkin (EFG) method      meshless method      time fractional partial differential equations  
Received:  21 July 2011      Revised:  06 September 2011      Accepted manuscript online: 
PACS:  02.60.Lj (Ordinary and partial differential equations; boundary value problems)  
  03.65.Ge (Solutions of wave equations: bound states)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11072117), the Natural Science Foundation of Zhejiang Province, China (Grant Nos. Y6110007 and Y6110502), and the K.C.Wong Magna Fund in Ningbo University, China.

Cite this article: 

Ge Hong-Xia(葛红霞), Liu Yong-Qing(刘永庆), and Cheng Rong-Jun(程荣军) Element-free Galerkin (EFG) method for analysis of the time-fractional partial differential equations 2012 Chin. Phys. B 21 010206

[1] Debnath L and Bhatta D 2004 Frac.Calc.appl. Anal. 7 21
[2] Sweilam N H, Khader M M and Nagy A M 2011 J. Comput. Appl. Math. 235 2832
[3] Zhang Y 2009 Appl. Math. Comput. 215 524
[4] Chen C M, Liu F and Burrage K 2008 Appl. Math. Comput. 198 754
[5] Liu F, Zhuang P, Anh V, Turner I and Burrage K 2007 Appl. Math. Comput. 191 12
[6] Zheng Y Y, Li C P and Zhao Z G 2010 Comput. Math. Appl. 59 1718
[7] Odibat Z and Momani S 2009 Comput. Math. Appl. 58 2199
[8] Wang J F, Sun F X and Cheng R J 2010 Chin. Phys. B 19 060201
[9] Cheng R J and Ge H X 2009 Chin. Phys. B 18 4059
[10] Du C 2000 Comput. Meth. Appl. Mesh. Engng. 182 89
[11] Kryl P and Belytschko T 1995 Comput. Mech. 17 26
[12] Cheng Y M and Peng M J 2005 Sci. China Ser. G 48 641
[13] Cheng Y M and Li J H 2005 Acta Phys. Sin. 54 4463 (in Chinese)
[14] Qin Y X and Cheng Y M 2006 Acta Phys. Sin. 55 3215 (in Chinese)
[15] Cheng R J and Cheng Y M 2007 Acta Phys. Sin. 56 5569 (in Chinese)
[16] Dai B D and Cheng Y M 2007 Acta Phys. Sin. 56 597 (in Chinese)
[17] Cheng R J and Cheng Y M 2008 Acta Phys. Sin. 57 6037 (in Chinese)
[18] Cheng R J and Cheng Y M 2008 Appl. Numer. Math. 58 884
[19] Chen L and Cheng Y M 2008 Acta Phys. Sin. 57 1 (in Chinese)
[20] Chen L and Cheng Y M 2008 Acta Phys. Sin. 57 5069 (in Chinese)
[21] Ren H P and Zhang W 2009 Chin. Phys. B 18 4065
[22] Chen L and Cheng Y M 2010 Chin. Phys. B 19 090202
[23] Cheng R J and Ge H X 2010 Chin. Phys. B 19 090201
[24] Wang J F and Cheng Y M 2011 Chin. Phys. B 20 030206
[25] Cheng R J and Cheng Y M 2011 Chin. Phys. B 20 070206
[26] Cheng R J and Liew K M 2009 Comput. Mech. 45 1
[27] Cheng R J and Cheng Y M 2011 Acta Phys. Sin. 60 070206 (in Chinese)
[28] Belytschko T, Krongauz Y and Organ D 1994 Comput. Meth. Appl. Mech. Engng. 139 3
[29] Belytschko T, Lu Y Y and Gu L 1994 Int. J. Numer. Meth. Engng. 37 229
[30] Diego A M 2008 Comput. Math. Appl. 56 1138
[1] Improved reproducing kernel particle method for piezoelectric materials
Ji-Chao Ma(马吉超), Gao-Feng Wei(魏高峰), Dan-Dan Liu(刘丹丹). Chin. Phys. B, 2018, 27(1): 010201.
[2] Topology optimization using the improved element-free Galerkin method for elasticity
Yi Wu(吴意), Yong-Qi Ma(马永其), Wei Feng(冯伟), Yu-Min Cheng(程玉民). Chin. Phys. B, 2017, 26(8): 080203.
[3] Meshless analysis of an improved element-free Galerkin method for linear and nonlinear elliptic problems
Yao-Zong Tang(唐耀宗), Xiao-Lin Li(李小林). Chin. Phys. B, 2017, 26(3): 030203.
[4] Two-dimensional fracture analysis of piezoelectric material based on the scaled boundary node method
Shen-Shen Chen(陈莘莘), Juan Wang(王娟), Qing-Hua Li(李庆华). Chin. Phys. B, 2016, 25(4): 040203.
[5] Solving unsteady Schrödinger equation using the improved element-free Galerkin method
Rong-Jun Cheng(程荣军) and Yu-Min Cheng(程玉民). Chin. Phys. B, 2016, 25(2): 020203.
[6] Hybrid natural element method for large deformation elastoplasticity problems
Ma Yong-Qi (马永其), Zhou Yan-Kai (周延凯). Chin. Phys. B, 2015, 24(3): 030204.
[7] Analysis of elastoplasticity problems using an improved complex variable element-free Galerkin method
Cheng Yu-Min (程玉民), Liu Chao (刘超), Bai Fu-Nong (白福浓), Peng Miao-Juan (彭妙娟). Chin. Phys. B, 2015, 24(10): 100202.
[8] Hybrid natural element method for viscoelasticity problems
Zhou Yan-Kai (周延凯), Ma Yong-Qi (马永其), Dong Yi (董轶), Feng Wei (冯伟). Chin. Phys. B, 2015, 24(1): 010204.
[9] A meshless algorithm with moving least square approximations for elliptic Signorini problems
Wang Yan-Chong (王延冲), Li Xiao-Lin (李小林). Chin. Phys. B, 2014, 23(9): 090202.
[10] A meshless method based on moving Kriging interpolation for a two-dimensional time-fractional diffusion equation
Ge Hong-Xia (葛红霞), Cheng Rong-Jun (程荣军). Chin. Phys. B, 2014, 23(4): 040203.
[11] Analysis of variable coefficient advection–diffusion problems via complex variable reproducing kernel particle method
Weng Yun-Jie (翁云杰), Cheng Yu-Min (程玉民). Chin. Phys. B, 2013, 22(9): 090204.
[12] A complex variable meshless local Petrov-Galerkin method for transient heat conduction problems
Wang Qi-Fang (王启防), Dai Bao-Dong (戴保东), Li Zhen-Feng (栗振锋). Chin. Phys. B, 2013, 22(8): 080203.
[13] A meshless Galerkin method with moving least square approximations for infinite elastic solids
Li Xiao-Lin (李小林), Li Shu-Ling (李淑玲). Chin. Phys. B, 2013, 22(8): 080204.
[14] Analysis of the generalized Camassa and Holm equation with the improved element-free Galerkin method
Cheng Rong-Jun, Wei Qi. Chin. Phys. B, 2013, 22(6): 060209.
[15] An element-free Galerkin (EFG) method for generalized Fisher equations (GFE)
Shi Ting-Yu (时婷玉), Cheng Rong-Jun (程荣军), Ge Hong-Xia (葛红霞). Chin. Phys. B, 2013, 22(6): 060210.
No Suggested Reading articles found!