Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(8): 080505    DOI: 10.1088/1674-1056/20/8/080505
GENERAL Prev   Next  

A general method for synchronizing an integer-order chaotic system and a fractional-order chaotic system

Si Gang-Quan(司刚全), Sun Zhi-Yong(孙志勇), and Zhang Yan-Bin(张彦斌)
State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
Abstract  This paper investigates the synchronization between integer-order and fractional-order chaotic systems. By introducing fractional-order operators into the controllers, the addressed problem is transformed into a synchronization one among integer-order systems. A novel general method is presented in the paper with rigorous proof. Based on this method, effective controllers are designed for the synchronization between Lorenz systems with an integer order and a fractional order, and for the synchronization between an integer-order Chen system and a fractional-order Liu system. Numerical results, which agree well with the theoretical analyses, are also given to show the effectiveness of this method.
Keywords:  chaos synchronization      integer-order chaotic system      fractional-order chaotic system      fractional calculus  
Received:  19 January 2011      Revised:  13 March 2011      Accepted manuscript online: 
PACS:  05.45.Pq (Numerical simulations of chaotic systems)  
  05.45.Xt (Synchronization; coupled oscillators)  
  05.45.Gg (Control of chaos, applications of chaos)  

Cite this article: 

Si Gang-Quan(司刚全), Sun Zhi-Yong(孙志勇), and Zhang Yan-Bin(张彦斌) A general method for synchronizing an integer-order chaotic system and a fractional-order chaotic system 2011 Chin. Phys. B 20 080505

[1] Diethelm K 2010 The Analysis of Fractional Differential Equations (Berlin: Springer)
[2] Grigorenko I and Grigorenko E 2003 Phys. Rev. Lett. 91 34101
[3] Li C and Chen G 2004 Physica A 341 55
[4] Li C and Chen G 2004 Chaos, Solitons & Fractals 22 549
[5] Lu J J and Liu C X 2007 Chin. Phys. 16 1586
[6] Boccaletti S, Kurths J, Osipov G, Valladares D and Zhou C 2002 Phys. Rep. 366 1
[7] Wu Z M and Xie J Y 2007 Chin. Phys. 16 1901
[8] Zhou P, Wei L J and Cheng X F 2009 Chin. Phys. B 18 2674
[9] Zhang R X and Yang S P 2010 Chin. Phys. B 19 020510
[10] Wang J W and Chen A M 2010 Chin. Phys. Lett. 27 110501
[11] Wu D and Li J J 2010 Chin. Phys. B 19 120505
[12] Zhang R and Xu Z Y 2010 Chin. Phys. B 19 120511
[13] Lee S M, Kwon O M and Park J H 2011 Chin. Phys. B 20 010506
[14] Li H Q, Liao X F and Huang H Y 2011 Acta Phys. Sin. 60 020512 (in Chinese)
[15] Zhou P and Kuang F 2010 Acta Phys. Sin. 59 6851 (in Chinese)
[16] Zhou P, Cheng Y M and Kuang F 2010 Chin. Phys. B 19 090503
[17] Zhou P and Cao Y X 2010 Chin. Phys. B 19 100507
[18] Odibat Z M 2010 Nonlinear Dyn. 60 479
[19] Jia L X, Dai H and Hui M 2010 Chin. Phys. B 19 110509
[20] Podlubny I 1999 Fractional Differential Equations (New York: Academic Press)
[21] Hartley T T, Lorenzo C F and Qammer K 1995 IEEE Trans. Circuits Syst. I 42 485
[22] Tavazoei M S 2009 IEEE Trans. Circuits Syst. II 56 519
[23] Vinagre B M, Podlubny I, Hernandez A and Feliu V 2000 Fractional Calculus & Appl. Anal. 3 231
[24] Oustaloup A, Levron F, Mathieu B and Nanot F 2000 IEEE Trans. Circuits Syst. I 47 25
[25] Valerio D and Sa da Costa J 2004 Fractional Derivatives and Applications, IFAC, Bordeaux
[26] Lorenz E N 1963 J. Atmos. Sci. 20 130
[27] Chen G and Ueta T 1999 Int. J. Bifur. Chaos 9 1465
[28] Liu C, Liu T, Liu L and Liu K 2004 Chaos, Solitons & Fractals 22 1031
[29] Xu Z and Liu C X 2008 Chin. Phys. B 17 4033
[1] An incommensurate fractional discrete macroeconomic system: Bifurcation, chaos, and complexity
Abderrahmane Abbes, Adel Ouannas, and Nabil Shawagfeh. Chin. Phys. B, 2023, 32(3): 030203.
[2] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[3] A mathematical analysis: From memristor to fracmemristor
Wu-Yang Zhu(朱伍洋), Yi-Fei Pu(蒲亦非), Bo Liu(刘博), Bo Yu(余波), and Ji-Liu Zhou(周激流). Chin. Phys. B, 2022, 31(6): 060204.
[4] Solutions and memory effect of fractional-order chaotic system: A review
Shaobo He(贺少波), Huihai Wang(王会海), and Kehui Sun(孙克辉). Chin. Phys. B, 2022, 31(6): 060501.
[5] Modeling and character analyzing of multiple fractional-order memcapacitors in parallel connection
Xiang Xu(徐翔), Gangquan Si(司刚全), Zhang Guo(郭璋), and Babajide Oluwatosin Oresanya. Chin. Phys. B, 2022, 31(1): 018401.
[6] Adaptive synchronization of a class of fractional-order complex-valued chaotic neural network with time-delay
Mei Li(李梅), Ruo-Xun Zhang(张若洵), and Shi-Ping Yang(杨世平). Chin. Phys. B, 2021, 30(12): 120503.
[7] Transient transition behaviors of fractional-order simplest chaotic circuit with bi-stable locally-active memristor and its ARM-based implementation
Zong-Li Yang(杨宗立), Dong Liang(梁栋), Da-Wei Ding(丁大为), Yong-Bing Hu(胡永兵), and Hao Li(李浩). Chin. Phys. B, 2021, 30(12): 120515.
[8] Hidden attractors in a new fractional-order discrete system: Chaos, complexity, entropy, and control
Adel Ouannas, Amina Aicha Khennaoui, Shaher Momani, Viet-Thanh Pham, Reyad El-Khazali. Chin. Phys. B, 2020, 29(5): 050504.
[9] Topological horseshoe analysis and field-programmable gate array implementation of a fractional-order four-wing chaotic attractor
En-Zeng Dong(董恩增), Zhen Wang(王震), Xiao Yu(于晓), Zeng-Qiang Chen(陈增强), Zeng-Hui Wang(王增会). Chin. Phys. B, 2018, 27(1): 010503.
[10] Carlson iterating rational approximation and performance analysis of fractional operator with arbitrary order
Qiu-Yan He(何秋燕), Bo Yu(余波), Xiao Yuan(袁晓). Chin. Phys. B, 2017, 26(4): 040202.
[11] A novel color image encryption scheme using fractional-order hyperchaotic system and DNA sequence operations
Li-Min Zhang(张立民), Ke-Hui Sun(孙克辉), Wen-Hao Liu(刘文浩), Shao-Bo He(贺少波). Chin. Phys. B, 2017, 26(10): 100504.
[12] Robust pre-specified time synchronization of chaotic systems by employing time-varying switching surfaces in the sliding mode control scheme
Alireza Khanzadeh, Mahdi Pourgholi. Chin. Phys. B, 2016, 25(8): 080501.
[13] Prescribed performance synchronization for fractional-order chaotic systems
Liu Heng (刘恒), Li Sheng-Gang (李生刚), Sun Ye-Guo (孙业国), Wang Hong-Xing (王宏兴). Chin. Phys. B, 2015, 24(9): 090505.
[14] Robust sliding mode control for fractional-order chaotic economical system with parameter uncertainty and external disturbance
Zhou Ke (周柯), Wang Zhi-Hui (王智慧), Gao Li-Ke (高立克), Sun Yue (孙跃), Ma Tie-Dong (马铁东). Chin. Phys. B, 2015, 24(3): 030504.
[15] Chaotic synchronization in Bose–Einstein condensate of moving optical lattices via linear coupling
Zhang Zhi-Ying (张志颖), Feng Xiu-Qin (冯秀琴), Yao Zhi-Hai (姚治海), Jia Hong-Yang (贾洪洋). Chin. Phys. B, 2015, 24(11): 110503.
No Suggested Reading articles found!