Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(6): 066102    DOI: 10.1088/1674-1056/20/6/066102
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Icosahedral medium-range order formed in Mg70Zn30 metallic glass: a larger-scale molecular dynamics simulation

Hou Zhao-Yang(侯兆阳)a)† , Liu Rang-Su(刘让苏) b), Tian Ze-An(田泽安)b), and Wang Jin-Guo(王晋国) a)
a College of Science, Xidian University, Xián 710071, China; b School of Physics and Microelectronics Science, Hunan University, Changsha 410082, China
Abstract  A larger-scale Mg70Zn30 alloy system including 100000 atoms has been simulated by using the molecular dynamics method to investigate the icosahedral medium-range order (IMRO) formed in the Mg70Zn30 metallic glass. It is found that the simulated pair distribution function of Mg70Zn30 metallic glass is in good agreement with the experimental results. The glass transition temperature Tg is near 450 K under the cooling rate of 1×1012 K/s. The icosahedral local structures play a critical role in the formation of metallic glass, and they are the dominant local configurations in the Mg70Zn30 metallic glass. The IMRO in the Mg70Zn30 metallic glass is characterized by certain types of extended icosahedral clusters combined by intercross-sharing atoms in the form of chains or dendrites. The size distributions of these IMRO clusters present a magic number sequence of 19, 23, 25, 27, 29, 31, 33, 35, 37, 39,..., and the magic clusters can be classified into three types according to their compactness. The IMRO clusters grow rapidly in a low-dimensional way with cooling, but this growth is limited near Tg.
Keywords:  molecular dynamics simulation      medium-range order      Mg70Zn30 metallic glass  
Received:  05 November 2010      Revised:  08 January 2011      Accepted manuscript online: 
PACS:  61.20.Ne (Structure of simple liquids)  
  64.70.pe (Metallic glasses)  
  81.70.pe  
  61.46.Bc (Structure of clusters (e.g., metcars; not fragments of crystals; free or loosely aggregated or loosely attached to a substrate))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 50831003) and the Special Fund for Basic Scientific Research of Central Colleges, Changán Univeristy (Grant No. CHD2009JC169).

Cite this article: 

Hou Zhao-Yang(侯兆阳), Liu Rang-Su(刘让苏), Tian Ze-An(田泽安), and Wang Jin-Guo(王晋国) Icosahedral medium-range order formed in Mg70Zn30 metallic glass: a larger-scale molecular dynamics simulation 2011 Chin. Phys. B 20 066102

[1] Bian X F, Pan X M, Qin X B and Jiang M H 2002 Sci. Chin. Ser. E 45 113
[2] Hou Z Y, Liu L X, Liu R S and Tian Z A 2009 Acta Phys. Sin. 58 4817 (in Chinese)
[3] Hafner J 1980 Phys. Rev. B 21 406
[4] Inoue A 2000 Acta Mater. 48 279
[5] Andonov P and Chieux P 1987 J. Non-cryst. Solids 93 331
[6] Paul F, Press W and Rabe P 1991 J. Non-cryst. Solids 130 98
[7] Sadoc A, Krishnan R and Rougier P 1985 J. Phys. F: em Met. Phys. 15 241
[8] Wang R H, Ye Y F, Ming G H and Teng X Y 2007 Acta Phys. Sin. 50 523 (in Chinese)
[9] Saxena N S, Bhandari D, Pratap A and Saksena M P 1990 J. Phys.: Condens. Matter. 2 9475
[10] Jha N and Mishra A K 2001 J. Alloys Compd. 329 224
[11] Wang S Y, Wang C Z, Li M Z, Huang L, Ott R T, Kramer M J, Sordelet D J and Ho K M 2008 Phys. Rev. B 78 184204
[12] Xi X K, Li L L, Zhang B, Wang W H and Wu Y 2007 Phys. Rev. Lett. 99 095501
[13] Egami T 2007 J. Non-cryst. Solids 353 3666
[14] Miracle D B 2004 Nature Mater. 3 697
[15] Sheng H W, Luo W K, Alamgir F M, Bai J M and Ma E 2006 Nature 439 419
[16] Honeycut J D and Andersen H C 1987 J. Phys. Chem. 91 4950
[17] Dong K J, Liu R S, Yu A B, Zou R P and Li J Y 2003 J. Phys.: Condens. Matter 15 743
[18] Hou Z Y, Liu R S, Zheng C X, Liu H R, Tian Z A, Wang X, Zhou Q Y and Chen Z H 2007 J. Chem. Phys. 127 174503
[19] Liu H R, Liu R S, Zhang A L, Hou Z Y, Wang X and Tian Z A 2007 Chin. Phys. 16 3747
[20] Wang S and Lai S K 1980 J. Phys. F: Met. Phys. 10 2717
[21] Li D H, Li X R and Wang S 1986 J. Phys. F: Met. Phys. 16 309
[22] Wang S, Lai S K and So C B 1980 J. Phys. F: Met. Phys. 10 445
[23] Jin Z H, Lu K, Gong Y D and Hu Z Q 1997 J. Chem. Phys. 106 8830
[24] Hoover W G, Ladd A J C and Moran B 1982 Phys. Rev. Lett. 48 1818
[25] Evans D J 1983 J. Chem. Phys. 78 3297
[26] Wendt H R and Abraham F F 1978 Phys. Rev. Lett. 41 1244
[27] Calka A 1986 J. Phys. F: Met. Phys. 16 1577
[28] Bernal J D 1960 Nature 185 68
[29] Gaskell P H 1979 J. Non-cryst. Solids 32 207
[30] Frank F C 1952 Proc. R. Soc. London A 215 43
[31] Kelton K F, Gangopadhyay A K, Kim T H and Lee G W 2006 J. Non-cryst. Solids 352 5318
[32] Harris I A, Kidwell R S and Northby J A 1984 Phys. Rev. Lett. 53 2390
[33] Doye J P K, Wales D J, Zetterling F H M and Dzugutov M 2003 J. Chem. Phys. 118 2792
[34] Solov'yov I A, Solov'yov A V and Greiner W 2003 Phys. Rev. Lett. 90 053401
[1] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[2] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[3] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[4] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[5] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[6] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[7] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[8] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[9] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
[10] Comparison of formation and evolution of radiation-induced defects in pure Ni and Ni-Co-Fe medium-entropy alloy
Lin Lang(稂林), Huiqiu Deng(邓辉球), Jiayou Tao(陶家友), Tengfei Yang(杨腾飞), Yeping Lin(林也平), and Wangyu Hu(胡望宇). Chin. Phys. B, 2022, 31(12): 126102.
[11] Learning physical states of bulk crystalline materials from atomic trajectories in molecular dynamics simulation
Tian-Shou Liang(梁添寿), Peng-Peng Shi(时朋朋), San-Qing Su(苏三庆), and Zhi Zeng(曾志). Chin. Phys. B, 2022, 31(12): 126402.
[12] Mechanism of microweld formation and breakage during Cu-Cu wire bonding investigated by molecular dynamics simulation
Beikang Gu(顾倍康), Shengnan Shen(申胜男), and Hui Li(李辉). Chin. Phys. B, 2022, 31(1): 016101.
[13] Simulation and experiment of the cooling effect of trapped ion by pulsed laser
Chang-Da-Ren Fang(方长达人), Yao Huang(黄垚), Hua Guan(管桦), Yuan Qian(钱源), and Ke-Lin Gao(高克林). Chin. Phys. B, 2021, 30(7): 073701.
[14] Structure-based simulations complemented by conventional all-atom simulations to provide new insights into the folding dynamics of human telomeric G-quadruplex
Yun-Qiang Bian(边运强), Feng Song(宋峰), Zan-Xia Cao(曹赞霞), Jia-Feng Yu(于家峰), and Ji-Hua Wang(王吉华). Chin. Phys. B, 2021, 30(7): 078702.
[15] Non-monotonic temperature evolution of nonlocal structure-dynamics correlation in CuZr glass-forming liquids
W J Jiang(江文杰) and M Z Li(李茂枝). Chin. Phys. B, 2021, 30(7): 076102.
No Suggested Reading articles found!