Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(6): 063104    DOI: 10.1088/1674-1056/20/6/063104
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Theoretical study of stereodynamics for the reaction O(3P) +D2 (v=0, j=0) $\to$ OD+D and isotope effect

Xu Zeng-Hui(许增慧) and Zong Fu-Jian(宗福建)
School of Physics, Shandong University, Jinan 250100, China
Abstract  Quasi-classical trajectory (QCT) calculations have been performed to study the product polarization behaviours in the reaction ${\rm O({ }^3P) + D_2}$ ($v = 0$, $j = 0) \to$ OD + D. By running trajectories on the $^{3}$A$^\prime $ and $^{3}$A$''$ potential energy surfaces (PESs), vector correlations such as the distributions of the polarization-dependent differential cross sections (PDDCSs), the angular distributions of $P(\theta _r $) and $P(\phi _r $) are presented. Isotope effect is discussed in  this work by a comprehensive comparison with the reaction ${\rm O({ }^3P) + H_2}$ ($v = 0$, $j = 0) \to$ H + H. Common  characteristics as well as differences are discussed in product alignment and orientation for the two reactions. The isotope mass  effect differs on the two potential energy surfaces: the isotope mass effect has stronger influence on $P(\theta _r $) and PDDCSs  of the $^{3}$A$^\prime $ PES while the opposite on $P(\phi _r $) of the $^{3}$A$''$ potential energy surface.
Keywords:  chemical stereodynamics      quasiclassical trajectory calculation      isotope effect      vector correlation  
Received:  17 October 2010      Revised:  25 December 2010      Accepted manuscript online: 
PACS:  31.15.xv (Molecular dynamics and other numerical methods)  
  34.20.-b (Interatomic and intermolecular potentials and forces, potential energy surfaces for collisions)  
  82.20.Kh (Potential energy surfaces for chemical reactions)  

Cite this article: 

Xu Zeng-Hui(许增慧) and Zong Fu-Jian(宗福建) Theoretical study of stereodynamics for the reaction O(3P) +D2 (v=0, j=0) $\to$ OD+D and isotope effect 2011 Chin. Phys. B 20 063104

[1] Zhang X and Han K L 2006 Int. J. Quantum Chem. 106 1815
[2] Hu J, Han K L and He G Z 2005 Phys. Rev. Lett. 95 123001
[3] Zhang H, Zhu R S, Wang G J, Han K L, He G Z and Lou N Q 1999 J. Chem. Phys. 110 2922
[4] Braunstein M, Sdler-Golden S, Maiti B and Schatz G C 2004 J. Chem. Phys. 120 4316
[5] Wang W L, Rosa C and Brand ao J 2005 Chem. Phys. Lett. 418 250
[6] Li R J, Han K L, Li F E, Lu R C, He G Z and Lou N Q 1994 Chem. Phys. Lett. 220 281
[7] Chen Y T, Zhang W P, Wang X Q and Zhao G J 2009 Chem. Phys. 365 158
[8] Liu Y F, Gao Y L, Shi D H and Sun J F 2009 Chem. Phys. 364 46
[9] Hou C Y, Li Y M and Zhao D 2009 Chem. Phys. 364 64
[10] Han B, Zong F J, Wang C L, Ma W Y and Zhou J H 2009 Chem. Phys. 374 94
[11] Chu T S and Han K L 2005 J. Phys. Chem. A 109 2050
[12] Chu T S, Zhang X and Han K L 2005 J. Chem. Phys. 122 214301
[13] Chu T S, Zhang Y and Han K L 2006 Int. Rev. Phys. Chem. 25 201
[14] Chu T S and Han K L 2008 Phys. Chem. Chem. Phys. 10 2431
[15] Li B and Han K L 2009 J. Phys. Chem. A 113 10189
[16] Song J B and Gislason E A 1996 J. Chem. Phys. 105 10429
[17] Song J B and Gislason E A 1996 Chem. Phys. Lett. 258 260
[18] Rogers S, Wang D, Kuppermann A and Walch S 2000 J. Phys. Chem. A 104 2308
[19] Wei Q, Li X and Li T 2010 Chem. Phys. 368 58
[20] Wei Q, Li X and Li T 2009 Chin. J. Chem. Phys. 22 523
[21] Weck P F and Balakrishnan N 2005 J. Chem. Phys. 123 144308
[22] Weck P F, Balakrishnan N, Brand ao J, Rosa C and Wang W 2006 J. Chem. Phys. 124 074308
[23] Mart'hinez R, Sierra J D and González M 2005 J. Chem. Phys. 123 174312
[24] Rio C M A and Brand ao J 2007 Chem. Phys. Lett. 433 268
[25] Carrasco S G, Sánchez L G, Aguado A, Roncero O, Alvari no J M, Hemández M L and Paniagua M 2004 J. Chem. Phys. 121 4605
[26] Xu Z H and Zong F J 2010 J. Mol. Struc. Theochem 960 22
[27] Wang M L, Han K L and He G Z 1998 J. Phys. Chem. A 102 10204
[28] Han K L, He G Z and Lou N Q 1996 J. Chem. Phys. 105 8699
[29] Wang M L, Han K L and He G Z 1998 J. Chem. Phys. 109 5446
[30] Chen M D, Han K L and Lou N Q 2002 Chem. Phys. Lett. 357 483
[31] Li J L, Yong Q, Ma F C, Ni Y Q and Zhao L N 2008 Chin. Phys. B 17 3649
[32] Han J R, Liu X F, Wang Y J, Wang Y Z, Xu G Y and Yang L 2008 Chin. Phys. B 17 4158
[33] Wong C Y, Lee T G and Wang L S 2008 Chin. Phys. B 17 2897
[34] Cao J W, Zhang Z J, Zhang C F, Liu K, Wang M H and Bian W S 2009 Proc. Natl. Acad. Sci. USA 106 13180
[35] Wang M H, Sun X M and Bian W S 2008 J. Chem. Phys. 129 084309
[1] Isotope effect and Coriolis coupling effect forthe Li + H(D)Cl→LiCl + H(D) reaction
Hongsheng Zhai(翟红生), Guanglei Liang(梁广雷), Junxia Ding(丁俊霞), Yufang Liu(刘玉芳). Chin. Phys. B, 2019, 28(5): 053401.
[2] Theoretical study of the radiative decay processes in H+(D+, T+)-Be collisions
Huilin Wei(魏惠琳), Xiaojun Liu(刘晓军). Chin. Phys. B, 2018, 27(12): 123101.
[3] Laser phase effect on asymmetric harmonic distribution in H2+
Li-Qiang Feng(冯立强), Wen-Liang Li(李文亮), Hui Liu(刘辉). Chin. Phys. B, 2017, 26(4): 044206.
[4] Effects of collision energy and rotational quantum number on stereodynamics of the reactions: H(2S)+NH(v=0, j=0, 2, 5, 10)→N(4S)+H2
Wei Wang(王伟), Yong-Jiang Yu(于永江), Gang Zhao(赵刚), Chuan-Lu Yang(杨传路). Chin. Phys. B, 2016, 25(8): 083402.
[5] Energy and rotation-dependent stereodynamics of H(2S) + NH(a1Δ)→H2(X1Σg+) + N(2D) reaction
Yong-Qing Li(李永庆), Yun-Fan Yang(杨云帆), Yang Yu(于洋), Yong-jia Zhang(张永嘉), Feng-Cai Ma(马凤才). Chin. Phys. B, 2016, 25(2): 023401.
[6] Stereodynamics of the reactions: F+H2/HD/HT→FH+H/D/T
Chi Xiao-Lin (迟晓琳), Zhao Jin-Feng (赵金峰), Zhang Yong-Jia (张永嘉), Ma Feng-Cai (马凤才), Li Yong-Qing (李永庆). Chin. Phys. B, 2015, 24(5): 053401.
[7] Vector correlations study of the reaction N(2D)+ H2(X1Σg+)→NH(a1Δ)+ H(2S) with different collision energies and reagent vibration excitations
Li Yong-Qing (李永庆), Zhang Yong-Jia (张永嘉), Zhao Jin-Feng (赵金峰), Zhao Mei-Yu (赵美玉), Ding Yong (丁勇). Chin. Phys. B, 2015, 24(11): 113402.
[8] Effects of the vibrational and rotational excitation of reagent on the stereodynamics of the reaction S(3P) + H2→SH + H
Shan Guang-Ling (单广玲), Wang Mei-Shan (王美山), Yang Chuan-Lu (杨传路), Li Yan-Qing (李艳青). Chin. Phys. B, 2014, 23(6): 068201.
[9] Quasi-classical trajectory study of the isotope effect on the stereodynamics in the reaction H(2S)+CH(X2Π; v=0, j=1)→C(1D)+H2(X1Σg+)
Wang Yun-Hui (王允辉), Xiao Chuan-Yun (肖传云), Deng Kai-Ming (邓开明), Lu Rui-Feng (陆瑞锋). Chin. Phys. B, 2014, 23(4): 043401.
[10] Stereodynamics in reaction O(1D)+CH4→OH+CH3
Sha Guang-Yan (沙广燕), Yuan Jiu-Chuang (袁久闯), Meng Chang-Gong (孟长功), Chen Mao-Du (陈茂笃). Chin. Phys. B, 2014, 23(1): 018202.
[11] Quasiclassical trajectory theoretical study on the chemical stereodynamics of the O(1D)+H2→OH+H reaction and its isotopic variants (HD, D2)
Yao Cui-Xia (姚翠霞), Zhao Guang-Jiu (赵广久). Chin. Phys. B, 2013, 22(8): 083403.
[12] The effect of the rotational excitation of NO on the stereodynamics for the reaction C(3P) + NO (X2Π)→CN (X2+) +O (3P)
Ma Jian-Jun (马建军), Zou Yong (邹勇), Liu Hou-Tong (刘厚通). Chin. Phys. B, 2013, 22(6): 063402.
[13] The effect of collision energy on the stereo-dynamics of the reaction H(2S)+NH(X3-, v=0, j=0)→N(4S)+H2
He Di (何缔), Wang Mei-Shan (王美山), Yang Chuan-Lu (杨传路), Jiang Zhi-Jun (姜志军). Chin. Phys. B, 2013, 22(6): 068201.
[14] Stereodynamics study of the exchange reaction O(3P) + CH4→H + OCH3
Cheng Da-Hai (程大海), Yuan Jiu-Chuang (袁久闯), Yang Tian-Gang (杨天罡), Chen Mao-Du (陈茂笃). Chin. Phys. B, 2013, 22(6): 068202.
[15] A theoretical study of the stereodynamics on the abstraction reactions H/D+HS/DS
Xu Guo-Liang (徐国亮), Liu Pei (刘培), Liu Yan-Lei (刘彦磊), Liu Yu-Fang (刘玉芳), Yuan Wei (袁伟), Zhang Xian-Zhou (张现周). Chin. Phys. B, 2013, 22(6): 068203.
No Suggested Reading articles found!