Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(4): 040512    DOI: 10.1088/1674-1056/20/4/040512
GENERAL Prev   Next  

New synchronization analysis for complex networks with variable delays

Zhang Hua-Guang(张化光), Gong Da-Wei(宫大为), and Wang Zhan-Shan(王占山)
College of Information Science and Engineering, Northeastern University, Shenyang 110004, China
Abstract  This paper deals with the issue of synchronization of delayed complex networks. Differing from previous results, the delay interval [0,d(t)] is divided into some variable subintervals by employing a new method of weighting delays. Thus, new synchronization criteria for complex networks with time-varying delays are derived by applying this weighting-delay method and introducing some free weighting matrices. The obtained results have proved to be less conservative than previous results. The sufficient conditions of asymptotical synchronization are derived in the form of linear matrix inequality, which are easy to verify. Finally, several simulation examples are provided to show the effectiveness of the proposed results.
Keywords:  complex networks      synchronization      time-varying delay      weighting delay      linear matrix inequality  
Received:  20 May 2010      Revised:  29 September 2010      Accepted manuscript online: 
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
  87.16.A- (Theory, modeling, and simulations)  
  87.85.dq (Neural networks)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 50977008, 60774048 and 61034005), the Research Fund for the Doctoral Program of China Higher Education (Grant No. 20070145015) and the National High Technology Research and Development Program of China (Grant No. 2009AA04Z127).

Cite this article: 

Zhang Hua-Guang(张化光), Gong Da-Wei(宫大为), and Wang Zhan-Shan(王占山) New synchronization analysis for complex networks with variable delays 2011 Chin. Phys. B 20 040512

[1] Meng Q K and Zhu J Y 2009 Chin. Phys. B 18 3632
[2] Albert R and Barabási A L 2002 Rev. Mod. Phys. 74 47
[3] Newman M E J and Watts D J 1999 Phys. Lett. A 263 341
[4] Albert R and Barabási A L 2002 Rev. Mod. Phys. 74 47
[5] Zhang H F, Fu X C and Wang B H 2009 Chin. Phys. B 18 3639
[6] Mikheyev S P and Smirnov A Y 1986 Nuovo Cimento 9 17
[7] Strogatz S H 2001 Nature 410 268
[8] Li X 2005 Int. J. Comput. Cognition 3 16
[9] Wang J W and Chen A M 2010 J. Comput. Appl. Math. 233 1897
[10] Yu X Q, Ren Q S, Hou J L and Zhao J Y 2009 Phys. Lett. A 373 1276
[11] Li C, Liao X and Wong K 2004 Physica D 194 187
[12] Cao J D, Li P and Wang W W 2006 Phys. Lett. A 353 318 bibitembib13Cao J D, Chen G R and Li P 2008 IEEE Trans. Syst., Man, Cybern. B: Cybern. 38 488 bibitembib14Cao J D and Li L L 2009 Neural Netw. 22 335 bibitembib15Liang J L, Wang Z D, Liu Y R and Liu X H 2008 IEEE Trans. Neural Netw. 19 1910 bibitembib16Gao H J and Chen T W 2007 IEEE Trans. Autom. Control 52 328 bibitembib17Liu Y R, Wang Z D, Liang J L and Liu X H 2008 IEEE Trans. Syst., Man, Cybern. B: Cybern. 38 1314 bibitembib18 Senan S and Arik S 2007 IEEE Trans. Syst., Man, Cybern. B: Cybern. 37 1375
[19] Li C and Chen G 2004 Physica A 343 263 bibitembib20Li C P, Sun W G and Kurths J 2006 Physica A 361 24 bibitembib21 Tang H W, Chen L, Lu J A and Tse C K 2008 Physica A 387 5623 bibitembib22 Lu X B and Qin B Z 2009 Phys. Lett. A 373 3650 bibitembib23Yang M L, Liu Y G, You Z S and Sheng P 2010 Nonlinear Anal. 11 2127 bibitembib24Huang C, Ho D W C and Lu J Q 2010 Nonlinear Anal. 11 1933
[25] Li H J and Dong Y 2009 J. Comput. Appl. Math. 232 149 bibitembib26Li K, Guan S H, Gong X F and Lai C H 2008 Phys. Lett. A 372 7133
[27] Fei Z Y, Gao H J and Zheng W X 2009 IEEE Trans. Circuits Syst. II: Exp. Briefs 56 499
[29] Zhang H G, Liu Z W, Huang G B and Wang Z S 2010 IEEE Trans. Neural Netw. 21 91 endfootnotesize
[1] Diffusive field coupling-induced synchronization between neural circuits under energy balance
Ya Wang(王亚), Guoping Sun(孙国平), and Guodong Ren(任国栋). Chin. Phys. B, 2023, 32(4): 040504.
[2] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[3] Analysis of cut vertex in the control of complex networks
Jie Zhou(周洁), Cheng Yuan(袁诚), Zu-Yu Qian(钱祖燏), Bing-Hong Wang(汪秉宏), and Sen Nie(聂森). Chin. Phys. B, 2023, 32(2): 028902.
[4] Influence of coupling asymmetry on signal amplification in a three-node motif
Xiaoming Liang(梁晓明), Chao Fang(方超), Xiyun Zhang(张希昀), and Huaping Lü(吕华平). Chin. Phys. B, 2023, 32(1): 010504.
[5] Vertex centrality of complex networks based on joint nonnegative matrix factorization and graph embedding
Pengli Lu(卢鹏丽) and Wei Chen(陈玮). Chin. Phys. B, 2023, 32(1): 018903.
[6] Power-law statistics of synchronous transition in inhibitory neuronal networks
Lei Tao(陶蕾) and Sheng-Jun Wang(王圣军). Chin. Phys. B, 2022, 31(8): 080505.
[7] Effect of astrocyte on synchronization of thermosensitive neuron-astrocyte minimum system
Yi-Xuan Shan(单仪萱), Hui-Lan Yang(杨惠兰), Hong-Bin Wang(王宏斌), Shuai Zhang(张帅), Ying Li(李颖), and Gui-Zhi Xu(徐桂芝). Chin. Phys. B, 2022, 31(8): 080507.
[8] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[9] Synchronization of nanowire-based spin Hall nano-oscillators
Biao Jiang(姜彪), Wen-Jun Zhang(张文君), Mehran Khan Alam, Shu-Yun Yu(于淑云), Guang-Bing Han(韩广兵), Guo-Lei Liu(刘国磊), Shi-Shen Yan(颜世申), and Shi-Shou Kang(康仕寿). Chin. Phys. B, 2022, 31(7): 077503.
[10] Characteristics of vapor based on complex networks in China
Ai-Xia Feng(冯爱霞), Qi-Guang Wang(王启光), Shi-Xuan Zhang(张世轩), Takeshi Enomoto(榎本刚), Zhi-Qiang Gong(龚志强), Ying-Ying Hu(胡莹莹), and Guo-Lin Feng(封国林). Chin. Phys. B, 2022, 31(4): 049201.
[11] Synchronization in multilayer networks through different coupling mechanisms
Xiang Ling(凌翔), Bo Hua(华博), Ning Guo(郭宁), Kong-Jin Zhu(朱孔金), Jia-Jia Chen(陈佳佳), Chao-Yun Wu(吴超云), and Qing-Yi Hao(郝庆一). Chin. Phys. B, 2022, 31(4): 048901.
[12] Explosive synchronization: From synthetic to real-world networks
Atiyeh Bayani, Sajad Jafari, and Hamed Azarnoush. Chin. Phys. B, 2022, 31(2): 020504.
[13] Robust H state estimation for a class of complex networks with dynamic event-triggered scheme against hybrid attacks
Yahan Deng(邓雅瀚), Zhongkai Mo(莫中凯), and Hongqian Lu(陆宏谦). Chin. Phys. B, 2022, 31(2): 020503.
[14] Collective behavior of cortico-thalamic circuits: Logic gates as the thalamus and a dynamical neuronal network as the cortex
Alireza Bahramian, Sajjad Shaukat Jamal, Fatemeh Parastesh, Kartikeyan Rajagopal, and Sajad Jafari. Chin. Phys. B, 2022, 31(2): 028901.
[15] Measure synchronization in hybrid quantum-classical systems
Haibo Qiu(邱海波), Yuanjie Dong(董远杰), Huangli Zhang(张黄莉), and Jing Tian(田静). Chin. Phys. B, 2022, 31(12): 120503.
No Suggested Reading articles found!