Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(12): 123301    DOI: 10.1088/1674-1056/20/12/123301
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Low-frequency vibrational modes of glutamine

Wang Wei-Ning(王卫宁)a)†, Wang Guo(王果) b)‡, and Zhang Yan(张岩)a)
a Beijing Key Laboratory for Terahertz Spectroscopy and Imaging, Key Laboratory of Terahertz Optoelectronics, Ministry of Education, Department of Physics, Capital Normal University, Beijing 100048, China; b Department of Chemistry, Capital Normal University, Beijing 100048, China
Abstract  High-resolution terahertz absorption and Raman spectra of glutamine in the frequency region 0.2 THz-2.8 THz are obtained by using THz time domain spectroscopy and low-frequency Raman spectroscopy. Based on the experimental and the computational results, the vibration modes corresponding to the terahertz absorption and Raman scatting peaks are assigned and further verified by the theoretical calculations. Spectral investigation of the periodic structure of glutamine based on the sophisticated hybrid density functional B3LYP indicates that the vibrational modes come mainly from the inter-molecular hydrogen bond in this frequency region.
Keywords:  vibrational modes      THz time-domain spectroscopy      Raman scattering      B3LYP      amino acid  
Received:  09 May 2011      Revised:  21 June 2011      Accepted manuscript online: 
PACS:  33.20.-t (Molecular spectra)  
  33.20.Vq (Vibration-rotation analysis)  
  78.30.-j (Infrared and Raman spectra)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2007CB310408) and the Beijing Natural Science Foundation of China (Grant No. KZ201110028035).

Cite this article: 

Wang Wei-Ning(王卫宁), Wang Guo(王果), and Zhang Yan(张岩) Low-frequency vibrational modes of glutamine 2011 Chin. Phys. B 20 123301

[1] Gervasio F L, Cardini G, Salvi P R and Schettino V 1998 J. Phys. Chem. A 102 2131
[2] Beard M C, Turner G M and Schmutteanmaer C A 2002 J. Phys. Chem. B 106 7146
[3] Strachan C J, Rades T, Newnham D A, Gordon K C, Pepper M and Taday P F 2004 Chem. Phys. Lett. 390 20
[4] Markelz A G, Roitberg A and Heilweil E J 2000 Chem. Phys. Lett. 320 42
[5] Walther M, Fischer B, Schall M, Helm H and Jepsen P U 2000 Chem. Phys. Lett. 332 389
[6] Walther M, Plochocka P, Fischer B, Helm H and Jepsen P U 2002 Biopolymers 67 310
[7] Shen Y C, Upadhya P C and Linfield E H 2004 Vib. Spectr. 35 111
[8] Taday P F, Bradley I V and Arnone D D 2003 J. Biol. Phys. 29 109
[9] Cherkasova O P, Nazarov M M, Shkurinov A P and Fedorov V I 2009 Radiophysics and Quantum Electronics 52 518
[10] Brandt N N, Chikishev A Y, Kargovsky A V, Nazarov M M, Parashchuk O D, Sapozhnikov D A, Smirnova I N, Shkurinov A P and Sumbatyan N V 2008 Vib. Spectr. 47 53
[11] Yu B, Zeng F, Yang Y, Xing Q, Chechin A, Xin X, Zeylikovich I and Alfano R R 2004 J. Biophys. 86 1649
[12] Yamaguchi M, Miyamaru F, Yamamoto K, Tani M and Hangyo M 2005 Appl. Phys. Lett. 86 053903
[13] Korter T M, Balu R, Campbell M B, Beard M C, Gregurick S K and Heilweil E J 2006 Chem. Phys. Lett. 418 65
[14] Ueno Y, Rungsawang R, Tomita I and Ajito K 2006 Anal. Chem. 78 5424
[15] Nagai N and Katsurazawa Y 2006 Biopolymers 85 207
[16] Yan Z, Hou D, Huang P, Cao B, Zhang G and Zhou Z 2008 Meas. Sci. Technol. 19 015602
[17] Wang W N 2009 Acta Phys. Sin. 58 7640 (in Chinese)
[18] Ma S H, Shi Y L, Xu X L, Yan W, Yang Y P and Wang L 2006 Acta Phys. Sin. 55 4091 (in Chinese)
[19] Ma J L, Xu K J, Li Z, Jin B B, Fu R, Zhang C H, Ji Z M, Zhang C, Chen Z X, Chen J and Wu P H 2009 Acta Phys. Sin. 58 6101 (in Chinese)
[20] Tian L, Zhou Q L, Zhao K, Shi Y L, Zhao D M, Zhao S Q, Zhao H, Bao R M, Zhu S M, Miao Q and Zhang C L 2011 Chin. Phys. B 20 010703
[21] Siegrist K, Bucher C R, Mandelbaum I, Walker A R H, Balu R, Gregurick S K and Plusquellic D F 2006 J. Am. Chem. Soc. 128 5764
[22] Allis D G, Prokhorova D A and Korter T M 2006 J. Phys. Chem. A 110 1951
[23] Saito S, Inerbaev T M, Mizuseki H, Igarashi N, Note R and Kawazoe Y 2006 Chem. Phys. Lett. 423 439
[24] Saito S, Inerbaev T M, Mizuseki H, Igarashi N, Note R and Kawazoe Y 2006 Chem. Phys. Lett. 432 157
[25] Jepsen P U and Clark S J 2007 Chem. Phys. Lett. 442 275
[26] Hermet P, Bantignies J L, Maurin D and Sauvajol J L 2007 Chem. Phys. Lett. 445 47
[27] Pascale F, Zicovich-Wilson C M, Lopez F, Civalleri B, Orlando R and Dovesi R 2004 J. Comput. Chem. 25 888
[28] Zicovich-Wilson C M, Pascale F, Roetti C, Saunders V R, Orlando R and Dovesi R 2004 J. Comput. Chem. 25 1873
[29] Chou K C 1980 Biophys. J. 45 881
[30] Zicovich-Wilson C M, Dovesi R and Saunders V R 2001 J. Chem. Phys. 115 9708
[31] Becke A D 1993 J. Chem. Phys. 98 5648
[32] Lee C, Yang W and Parr R G 1988 Phys. Rev. B 37 785
[33] Dovesi R, Saunders V R, Roetti C, Orlando R, Zicovich-Wilson C M, Pascale F, Civalleri B, Doll K, Harrison N M, Bush I J, D'Arco Ph and Llunell M 2007 CRYSTAL06 User's Manual University of Torino, Italy
[34] Shen Y C, Upadhya P C, Linfield E H and Davies A G 2004 Vib. Spectro. 35 111
[35] Ugliengo P, Viterbo D and Chiari G 1993 Z. Kristallogr. 207 9
[36] Ugliengo P 2006 MOLDRAW: A Program to Display and Manipulate Molecular and Crystal Structures Torino, available on the web at http://www.moldraw.unito.it
[1] Impact of amplified spontaneous emission noise on the SRS threshold of high-power fiber amplifiers
Wei Liu(刘伟), Shuai Ren(任帅), Pengfei Ma(马鹏飞), and Pu Zhou(周朴). Chin. Phys. B, 2023, 32(3): 034202.
[2] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[3] Effects of Landau damping and collision on stimulated Raman scattering with various phase-space distributions
Shanxiu Xie(谢善秀), Yong Chen(陈勇), Junchen Ye(叶俊辰), Yugu Chen(陈雨谷), Na Peng(彭娜), and Chengzhuo Xiao(肖成卓). Chin. Phys. B, 2022, 31(5): 055201.
[4] High-pressure Raman study of osmium and rhenium up to 200 GPa and pressure dependent elastic shear modulus C44
Jingyi Liu(刘静仪), Yu Tao(陶雨), Chunmei Fan(范春梅), Binbin Wu(吴彬彬), Qiqi Tang(唐琦琪), and Li Lei(雷力). Chin. Phys. B, 2022, 31(3): 037801.
[5] Raman phonon anomalies in Sr(Fe1-xCox)2As2
Yanxing Yang(杨彦兴), Hewei Zhang(张鹤巍), and Haizheng Zhuang(庄海正). Chin. Phys. B, 2022, 31(2): 027401.
[6] Quantum computation and simulation with vibrational modes of trapped ions
Wentao Chen(陈文涛), Jaren Gan, Jing-Ning Zhang(张静宁), Dzmitry Matuskevich, and Kihwan Kim(金奇奂). Chin. Phys. B, 2021, 30(6): 060311.
[7] Optical spectroscopy study of damage evolution in 6H-SiC by H$_{2}^{ + }$ implantation
Yong Wang(王勇), Qing Liao(廖庆), Ming Liu(刘茗), Peng-Fei Zheng(郑鹏飞), Xinyu Gao(高新宇), Zheng Jia(贾政), Shuai Xu(徐帅), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2021, 30(5): 056106.
[8] Fractal microstructure of Ag film via plasma discharge as SERS substrates
Xue-Fen Kan(阚雪芬), Cheng Yin(殷澄), Zhuang-Qi Cao(曹庄琪), Wei Su(苏巍), Ming-Lei Shan(单鸣雷), and Xian-Ping Wang(王贤平). Chin. Phys. B, 2021, 30(12): 125201.
[9] Single-molecule mechanical folding and unfolding kinetics of armless mitochondrial tRNAArg from Romanomermis culicivorax
Yan-Hui Li(李彦慧), Zhen-Sheng Zhong(钟振声), and Jie Ma(马杰). Chin. Phys. B, 2021, 30(10): 108203.
[10] Raman scattering from highly-stressed anvil diamond
Shan Liu(刘珊), Qiqi Tang(唐琦琪), Binbin Wu(吴彬彬), Feng Zhang(张峰), Jingyi Liu(刘静仪), Chunmei Fan(范春梅), and Li Lei(雷力). Chin. Phys. B, 2021, 30(1): 016301.
[11] Lattice deformation in epitaxial Fe3O4 films on MgO substrates studied by polarized Raman spectroscopy
Yang Yang(杨洋), Qiang Zhang(张强), Wenbo Mi(米文博), Xixiang Zhang(张西祥). Chin. Phys. B, 2020, 29(8): 083302.
[12] Raman scattering study of two-dimensional magnetic van der Waals compound VI3
Yi-Meng Wang(王艺朦), Shang-Jie Tian(田尚杰), Cheng-He Li(李承贺), Feng Jin(金峰), Jian-Ting Ji(籍建葶), He-Chang Lei(雷和畅), Qing-Ming Zhang(张清明). Chin. Phys. B, 2020, 29(5): 056301.
[13] Forward-headed structure change of acetic acid-water binary system by stimulated Raman scattering
Zhe Liu(刘喆), Bo Yang(杨博), Hong-Liang Zhao(赵洪亮), Zhan-Long Li(李占龙), Zhi-Wei Men(门志伟), Xiao-Feng Wang(王晓峰), Ning Wang(王宁), Xian-Wen Cao(曹献文), Sheng-Han Wang(汪胜晗), Cheng-Lin Sun(孙成林). Chin. Phys. B, 2019, 28(9): 094206.
[14] Characterization of structural transitions and lattice dynamics of hybrid organic-inorganic perovskite CH3NH3PbI3
Feng Jin(金峰), Jian-Ting Ji(籍建葶), Chao Xie(谢超), Yi-Meng Wang(王艺朦), Shu-Na He(贺淑娜), Lei Zhang(张磊), Zhao-Rong Yang(杨昭荣), Feng Yan(严锋), Qing-Ming Zhang(张清明). Chin. Phys. B, 2019, 28(7): 076102.
[15] Raman scattering study of magnetic layered MPS3 crystals (M=Mn, Fe, Ni)
Yi-Meng Wang(王艺朦), Jian-Feng Zhang(张建丰), Cheng-He Li(李承贺), Xiao-Li Ma(马肖莉), Jian-Ting Ji(籍建葶), Feng Jin(金峰), He-Chang Lei(雷和畅), Kai Liu(刘凯), Wei-Lu Zhang(张玮璐), Qing-Ming Zhang(张清明). Chin. Phys. B, 2019, 28(5): 056301.
No Suggested Reading articles found!