Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(11): 116802    DOI: 10.1088/1674-1056/20/11/116802
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Dynamic scaling and optical properties of Zn(S, O, OH) thin film grown by chemical bath deposition

Zhang Yi(张毅)a)†, Li Bo-Yan(李博研)a), Dang Xiang-Yu(党向瑜)a), Wu Li(武莉)b), Jin Jing(金晶)a), Li Feng-Yan(李凤岩)a), Ao Jian-Ping(敖建平)a), and Sun Yun(孙云)a)
a Institute of Photoelectronic Thin Film Devices and Technology, Tianjin Key Laboratory for Photoelectronic Thin Film Devices and Technology, and Key Laboratory of Optoelectronic Information Science & Technology of Ministry of Education, Nankai University, Tianjin 300071, China; b Institute of Physics, Nankai University, Tianjin 300071, China
Abstract  The scaling behavior and optical properties of Zn(S, O and OH) thin films deposited on soda-lime glass substrates by chemical bath deposition method were studied by combined roughness measurements, scanning electron microscopy and optical properties measurement. From the scaling behaviour, the value of growth scaling exponent β , 0.38±0.06, was determined. This value indicated that the Zn(S, O, OH) film growth in the heterogeneous process was influenced by the surface diffusion and shadowing effect. Results of the optical properties measurements disclosed that the transmittance of the film was in the region of 70%-88% and the optical properties of the film grown for 40 min were better than those grown under other conditions. The energy band gap of the film deposited with 40 min was around 3.63 eV.
Keywords:  roughness      growth behaviour      Zn(S, O, OH)      optical properties  
Received:  04 January 2011      Revised:  14 July 2011      Accepted manuscript online: 
PACS:  68.55.A- (Nucleation and growth)  
  78.20.-e (Optical properties of bulk materials and thin films)  
  81.15.Aa (Theory and models of film growth)  
  81.15.Lm (Liquid phase epitaxy; deposition from liquid phases (melts, solutions, And surface layers on liquids))  
Fund: Project supported by the National High Technology Research and Development Program of China (Grant No. 2004AA513020), the National Basic Research Program of China (Grant No. 2010CB933803), and the National Natural Science Foundation of China (Grant Nos. 60906033, 50902074, and 90922037).

Cite this article: 

Zhang Yi(张毅), Li Bo-Yan(李博研), Dang Xiang-Yu(党向瑜), Wu Li(武莉), Jin Jing(金晶), Li Feng-Yan(李凤岩), Ao Jian-Ping(敖建平), and Sun Yun(孙云) Dynamic scaling and optical properties of Zn(S, O, OH) thin film grown by chemical bath deposition 2011 Chin. Phys. B 20 116802

[1] Bar M, Ennaoui A, Klaer J, Kropp T, Saez-Araoz R, Allsop N, Lauermann I, Schock H W and Lux-Steiner M C 2006 J. Appl. Phys. 99 123503
[2] Islam M M, Ishizuka S, Yamada A, Sakurai K, Niki S, Sakurai T and Akimoto K 2009 Solar Energy Mater. Solar Cells 93 970
[3] Vidal J, Vigil O, de Melo O, Lopez N and Zelaya-ngel O 1999 Mater. Chem. Phys. 61 139
[4] Ma H, Ma G H, Wang W J, Gao X X and Ma H L 2008 Chin. Phys. B 17 1280
[5] Pavaskar N R, Menezes C A and Sinha A P B 1977 J. Electrochem. Soc. 124 743
[6] Kaur I, Pandya D K and Chopra K L 1980 J. Electrochem. Soc. 127 943
[7] Dona J M and Herrero J 1992 J. Electrochem. Soc. 139 2810
[8] Lincot D, Ortega-Borges R and Froment M 1994 Appl. Phys. Lett. 64 569
[9] Cortes R, Froment M, Mokilim B and Lincot D 1996 Phil. Mag. Lett. 73 209
[10] Zhang Y, Dang X Y, Jin J, Yu T, Li B Z, He Q, Li F Y and Sun Y 2010 Appl. Surf. Sci. 256 6871
[11] Bhattacharya R N, Contreras M A and Teeter G 2004 Jpn. J. Appl. Phys. 43B L1475
[12] Vasseur K, Rollin C, Vandezande S, Temst K, Froyen L and Heremans P 2010 J. Phys. Chem. C 114 2730
[13] He J F, Niu Z C, Chang X Y, Ni H Q, Zhu Y, Li M F and Shang X J 2010 Chin. Phys. B 20 018102
[14] Barabasi A L and Stanley H E 1995 Fractal Concepts in Surface Growth (Cambridge: Cambridge University Press) p. 20
[15] Krug J 1997 Adv. Phys. 46 139
[16] Bray K R and Parsons G N 2001 Phys. Rev. B 65 035311
[17] Zhang Y, Barrena E, Zhang X N, Turak A, Maye F and Dosch H 2010 J. Phys. Chem. C 114 13752
[18] Chen L, Zhang D and Chen Q 2006 Proceedings of the 1st IEEE International Conference on Nano/micro Engineered and Molecular Systems p. 599
[19] Nakada T, Furumi K and Kunioka A 1999 IEEE Trans. On Elec. Dev. 46 2093
[20] Sirringhaus H, Brown P J, Friend R H, Nielsen M M, Bechgaard K, Langeveld-Voss B M W, Spiering A J, Janssen R A J, Herwig P and de Leeuw D M 1999 Nature 401 685
[21] Kardar M, Parisi G and Zhang Y C 1986 Phys. Rev. Lett. 56 889
[22] Lafouresse M C, Heard P J and Schwarzacher W 2007 Phys. Rev. Lett. 98 236101
[23] Roennow D, Isidorsson J and Niklasson G A 1996 Phys. Rev. E 54 4021
[24] Drotar J T, Zhao Y P, Lu T M and Wang G C 2000 Phys. Rev. B 62 2118
[25] Duerr A C, Schreiber F, Ritley K A, Kruppa V, Krug J, Dosch H and Struth B 2003 Phys. Rev. Lett. 90 016104
[26] das Sarma S and Tamborenea P 1991 Phys. Rev. Lett. 66 325
[27] Wolf D and Villanin J 1990 Europhys. Lett. 13 389
[28] Krug K, Stettner J and Magnussen O M 2006 Phys. Rev. Lett. 96 246101
[29] Hayakawa R, Turak A, Zhang X N, Hiroshiba N, Dosch H, Chikyow T and Wakayama Y 2010 J. Chem. Phys. 133 034706
[30] Dolatshahi-Pirouz A, Hovgaard M B, Rechendorff K, Chevallier J, Foss M and Besenbacher F 2008 Phys. Rev. B 77 115427
[31] Platzer-Bjorkman C, Tomdahl T, Abou-Ras D, Malmstrom J, Kessler J and Stolt L 2006 J. Appl. Phys. 100 044506
[1] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[2] Effect of Cu doping on the secondary electron yield of carbon films on Ag-plated aluminum alloy
Tiancun Hu(胡天存), Shukai Zhu(朱淑凯), Yanan Zhao(赵亚楠), Xuan Sun(孙璇), Jing Yang(杨晶), Yun He(何鋆), Xinbo Wang(王新波), Chunjiang Bai(白春江), He Bai(白鹤), Huan Wei(魏焕), Meng Cao(曹猛), Zhongqiang Hu(胡忠强), Ming Liu(刘明), and Wanzhao Cui(崔万照). Chin. Phys. B, 2022, 31(4): 047901.
[3] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[4] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[5] Tailoring the optical and magnetic properties of La-BaM hexaferrites by Ni substitution
Hafiz T. Ali, M. Ramzan, M Imran Arshad, Nicola A. Morley, M. Hassan Abbas, Mohammad Yusuf, Atta Ur Rehman, Khalid Mahmood, Adnan Ali, Nasir Amin, and M. Ajaz-un-Nabi. Chin. Phys. B, 2022, 31(2): 027502.
[6] First-principles study of structural and opto-electronic characteristics of ultra-thin amorphous carbon films
Xiao-Yan Liu(刘晓艳), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(1): 016102.
[7] Stability of liquid crystal systems doped with γ-Fe2O3 nanoparticles
Xu Zhang(张旭), Ningning Liu(刘宁宁), Zongyuan Tang(唐宗元), Yingning Miao(缪应宁), Xiangshen Meng(孟祥申), Zhenghong He(何正红), Jian Li(李建), Minglei Cai(蔡明雷), Tongzhou Zhao(赵桐州), Changyong Yang(杨长勇), Hongyu Xing(邢红玉), and Wenjiang Ye(叶文江). Chin. Phys. B, 2021, 30(9): 096101.
[8] Analysis of properties of krypton ion-implanted Zn-polar ZnO thin films
Qing-Fen Jiang(姜清芬), Jie Lian(连洁), Min-Ju Ying(英敏菊), Ming-Yang Wei(魏铭洋), Chen-Lin Wang(王宸琳), and Yu Zhang(张裕). Chin. Phys. B, 2021, 30(9): 097801.
[9] Strain-tunable electronic and optical properties of h-BN/BC3 heterostructure with enhanced electron mobility
Zhao-Yong Jiao(焦照勇), Yi-Ran Wang(王怡然), Yong-Liang Guo(郭永亮), and Shu-Hong Ma(马淑红). Chin. Phys. B, 2021, 30(7): 076801.
[10] Low-dimensional phases engineering for improving the emission efficiency and stability of quasi-2D perovskite films
Yue Wang(王月), Zhuang-Zhuang Ma(马壮壮), Ying Li(李营), Fei Zhang(张飞), Xu Chen(陈旭), and Zhi-Feng Shi (史志锋). Chin. Phys. B, 2021, 30(6): 067802.
[11] Effects of substitution of group-V atoms for carbon or silicon atoms on optical properties of silicon carbide nanotubes
Ying-Ying Yang(杨莹莹), Pei Gong(龚裴), Wan-Duo Ma(马婉铎), Rui Hao(郝锐), and Xiao-Yong Fang(房晓勇). Chin. Phys. B, 2021, 30(6): 067803.
[12] Gas sensor using gold doped copper oxide nanostructured thin films as modified cladding fiber
Hussein T. Salloom, Rushdi I. Jasim, Nadir Fadhil Habubi, Sami Salman Chiad, M Jadan, and Jihad S. Addasi. Chin. Phys. B, 2021, 30(6): 068505.
[13] Determination of charge-compensated C3v (II) centers for Er 3+ ions in CdF2 and CaF2 crystals
Rui-Peng Chai(柴瑞鹏), Dan-Hui Hao(郝丹辉), Dang-Li Gao(高当丽), and Qing Pang(庞庆). Chin. Phys. B, 2021, 30(3): 037601.
[14] Optical properties of several ternary nanostructures
Xiao-Long Tang(唐小龙), Xin-Lu Cheng(程新路), Hua-Liang Cao(曹华亮), and Hua-Dong Zeng(曾华东). Chin. Phys. B, 2021, 30(1): 017803.
[15] Structural and optical characteristic features of RF sputtered CdS/ZnO thin films
Ateyyah M Al-Baradi, Fatimah A Altowairqi, A A Atta, Ali Badawi, Saud A Algarni, Abdulraheem S A Almalki, A M Hassanien, A Alodhayb, A M Kamal, M M El-Nahass. Chin. Phys. B, 2020, 29(8): 080702.
No Suggested Reading articles found!