Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(9): 097106    DOI: 10.1088/1674-1056/19/9/097106
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Parameter analysis for gate metal–oxide–semiconductor structures of ion-implanted 4H silicon carbide metal–semiconductor field-effect transistors

Wang Shou-Guo(王守国)a), Zhang Yi-Men(张义门)b), and Zhang Yu-Ming(张玉明)b)
a School of Information Science and Technology, Northwest University, Xi'an 710127, China; b School of Microelectronics, Xidian University, Xi'an 710071, China
Abstract  From the theoretical analysis of the thermionic emission model of current–voltage characteristics, this paper extracts the parameters for the gate Schottky contact of two ion-implanted 4H-SiC metal–semiconductor field-effect transistors (sample A and sample B for three and four times multiple ion-implantation channel region respectively) fabricated in the experiment, including the ideality factor, the series resistance, the zero-field barrier height, the interface oxide capacitance, the interface state density distribution, the neutral level of interface states and the fixed space charge density. The methods to improve the interface of the ion-implanted Schottky contact are given at last.
Keywords:  silicon carbide      interface states      ion-implantation      barrier height  
Received:  03 January 2010      Revised:  20 February 2010      Accepted manuscript online: 
PACS:  7155D  
  7120C  
  7320A  
  7850G  

Cite this article: 

Wang Shou-Guo(王守国), Zhang Yi-Men(张义门), and Zhang Yu-Ming(张玉明) Parameter analysis for gate metal–oxide–semiconductor structures of ion-implanted 4H silicon carbide metal–semiconductor field-effect transistors 2010 Chin. Phys. B 19 097106

[1] Rambach M, Bauer A J and Ryssel H 2008 wxPhys. Status Solidi B245 1315
[2] Yanagida N, Ishibashi K, Uchiumi S and Inada T 2007 wxNucl. Instrum. Methods Phys. Res. Sect. B257 203
[3] Audren A, Benyagoub A, Thome L and Garrido F 2008 wxNucl. Instrum. Methods Phys. Res. Sect. B266 2810
[4] Sundaresan S G, Mahadik N A, Qadri S B and Schreifels J A 2008 wxSolid-State Electron.52 140
[5] Zhao J H, Tone K, Alexandrov P, Fursin L and Weiner M 2003 wxIEEE Electron Device Lett.24 81
[6] Hull B A, Sumakeris J J, O'Loughlin M J and Zhang Q C 2008 wxIEEE Trans. Electron Devices 55 1864
[7] Sui Y, Tsuji T and Cooper J A 2005 wxIEEE Electron Device Lett.26 255
[8] Matin M, Saha A and Cooper J A 2004 wxIEEE Trans. Electron Devices51 1721
[9] Watanabe M, Fukushi D, Yano H and Nakajima S 2007 wxCS Mantech. Conf.187
[10] Hsia H, Tang Z, Caruth D and Becher D 1999 wxIEEE Electron Device Lett.20 245
[11] Tucker J B, Mitra S, Papanicolaou N and Siripuram A 2002 wxDiamond Relat. Mater.11 392
[12] Tucker J B, Papanicolaou N, Rao M V and Holland O W 2002 wxDiamond. Relat. Mater. 11 1344
[13] Katakami S, Ono S and Arai M 2009 wxMater. Sci. Forum600--603 1107
[14] Tataroglu A and Altindal S 2009 wxJ. Alloys Compd.479 893
[15] Andrews J M and Lepselter M P 1970 wxSolid-State Electron.13 1015
[16] Crowell C R and Roberts G I 1969 wxJ. Appl. Phys.40 3727
[17] Card H C and Rhoderick E H 1971wx J. Phys. D: Appl. Phys.41593
[18] Cova P, Singh A, Medina A and Masut R A 1998 wxSolid-State Electron.42 477
[19] Sze S M 1981 Physics of Semiconductor Devices (New York: Wiley) bf7 279
[20] Pande K P and Shen C C 1982 wxJ. Appl. Phys.53 749
[21] Ohno T, Onose H and Sugawara Y 1999 wxJ. Electron. Mater.28 180
[22] Capano M A, Ryu S and Melloch M R 1998 wxJ. Electron. Mater.27 370
[23] Capano M A, Ryu S and Cooper J A 1999 wxJ. Electron. Mater. 28 214
[24] Wang J J, Lambers E S, Pearton S J and Ostling M 1998 wxSolid-State Electron.42 2283
[25] Constantinidis G, Kuzmic J and Michelakis K 1998 wxSolid-State Electron.42 253
[26] Yang Z D, Du H H and Libera M 1996 wxJ. Mater. Res.10 1441
[27] Capano M A, Santhakumar R and Das M K 1999 wxElectron. Mater. Conf.210
[28] Jones K A, Wood M C, Zheleva T S and Kirchner K W 2008 wxJ. Electron. Mater.37 917
[29] Zhang L, Zhang Y M, Zhang Y M, Han C and Ma Y J 2009 wxChin. Phys. B18 3490
[1] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[2] Improvement on short-circuit ability of SiC super-junction MOSFET with partially widened pillar structure
Xinxin Zuo(左欣欣), Jiang Lu(陆江), Xiaoli Tian(田晓丽), Yun Bai(白云), Guodong Cheng(成国栋), Hong Chen(陈宏), Yidan Tang(汤益丹), Chengyue Yang(杨成樾), and Xinyu Liu(刘新宇). Chin. Phys. B, 2022, 31(9): 098502.
[3] Modulation of Schottky barrier in XSi2N4/graphene (X=Mo and W) heterojunctions by biaxial strain
Qian Liang(梁前), Xiang-Yan Luo(罗祥燕), Yi-Xin Wang(王熠欣), Yong-Chao Liang(梁永超), and Quan Xie(谢泉). Chin. Phys. B, 2022, 31(8): 087101.
[4] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[5] A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance
Pei Shen(沈培), Ying Wang(王颖), and Fei Cao(曹菲). Chin. Phys. B, 2022, 31(7): 078501.
[6] Bias-induced reconstruction of hybrid interface states in magnetic molecular junctions
Ling-Mei Zhang(张令梅), Yuan-Yuan Miao(苗圆圆), Zhi-Peng Cao(曹智鹏), Shuai Qiu(邱帅), Guang-Ping Zhang(张广平), Jun-Feng Ren(任俊峰), Chuan-Kui Wang(王传奎), and Gui-Chao Hu(胡贵超). Chin. Phys. B, 2022, 31(5): 057303.
[7] Assessing the effect of hydrogen on the electronic properties of 4H-SiC
Yuanchao Huang(黄渊超), Rong Wang(王蓉), Yiqiang Zhang(张懿强), Deren Yang(杨德仁), and Xiaodong Pi(皮孝东). Chin. Phys. B, 2022, 31(5): 056108.
[8] Construction and mechanism analysis on nanoscale thermal cloak by in-situ annealing silicon carbide film
Jian Zhang(张健), Hao-Chun Zhang(张昊春), Zi-Liang Huang(黄子亮), Wen-Bo Sun(孙文博), and Yi-Yi Li(李依依). Chin. Phys. B, 2022, 31(1): 014402.
[9] Effects of substitution of group-V atoms for carbon or silicon atoms on optical properties of silicon carbide nanotubes
Ying-Ying Yang(杨莹莹), Pei Gong(龚裴), Wan-Duo Ma(马婉铎), Rui Hao(郝锐), and Xiao-Yong Fang(房晓勇). Chin. Phys. B, 2021, 30(6): 067803.
[10] Improved 4H-SiC UMOSFET with super-junction shield region
Pei Shen(沈培), Ying Wang(王颖), Xing-Ji Li(李兴冀), Jian-Qun Yang(杨剑群), Cheng-Hao Yu(于成浩), and Fei Cao(曹菲). Chin. Phys. B, 2021, 30(5): 058502.
[11] Characteristics and mechanisms of subthreshold voltage hysteresis in 4H-SiC MOSFETs
Xi-Ming Chen(陈喜明), Bang-Bing Shi(石帮兵), Xuan Li(李轩), Huai-Yun Fan(范怀云), Chen-Zhan Li(李诚瞻), Xiao-Chuan Deng(邓小川), Hai-Hui Luo(罗海辉), Yu-Dong Wu(吴煜东), and Bo Zhang(张波). Chin. Phys. B, 2021, 30(4): 048504.
[12] Conductance and dielectric properties of hydrogen and hydroxyl passivated SiCNWs
Wan-Duo Ma(马婉铎), Ya-Lin Li(李亚林), Pei Gong(龚裴), Ya-Hui Jia(贾亚辉), and Xiao-Yong Fang(房晓勇). Chin. Phys. B, 2021, 30(10): 107801.
[13] Temperature-dependent barrier height inhomogeneities in PTB7:PC71BM-based organic solar cells
Brahim Ait Ali, Reda Moubah, Abdelkader Boulezhar, Hassan Lassri. Chin. Phys. B, 2020, 29(9): 098801.
[14] Experimental evaluation of interface states during time-dependent dielectric breakdown of GaN-based MIS-HEMTs with LPCVD-SiNx gate dielectric
Ya-Wen Zhao(赵亚文), Liu-An Li(李柳暗), Tao-Tao Que(阙陶陶), Qiu-Ling Qiu(丘秋凌), Liang He(何亮), Zhen-Xing Liu(刘振兴), Jin-Wei Zhang(张津玮), Qian-Shu Wu(吴千树), Jia Chen(陈佳), Zhi-Sheng Wu(吴志盛), Yang Liu(刘扬). Chin. Phys. B, 2020, 29(6): 067203.
[15] Design and fabrication of 10-kV silicon-carbide p-channel IGBTs with hexagonal cells and step space modulated junction termination extension
Zheng-Xin Wen(温正欣), Feng Zhang(张峰), Zhan-Wei Shen(申占伟), Jun Chen(陈俊), Ya-Wei He(何亚伟), Guo-Guo Yan(闫果果), Xing-Fang Liu(刘兴昉), Wan-Shun Zhao(赵万顺), Lei Wang(王雷), Guo-Sheng Sun(孙国胜), Yi-Ping Zeng(曾一平). Chin. Phys. B, 2019, 28(6): 068504.
No Suggested Reading articles found!