Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(6): 060201    DOI: 10.1088/1674-1056/19/6/060201
GENERAL   Next  

Element-free Galerkin method for a kind of KdV equation

Wang Ju-Feng(王聚丰)a)†, Sun Feng-Xin(孙凤欣) b), and Cheng Rong-Jun(程荣军)a)
a Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China; b Ningbo University of Technology, Ningbo 315016, China
Abstract  The present paper deals with the numerical solution of the third-order nonlinear KdV equation using the element-free Galerkin (EFG) method which is based on the moving least-squares approximation. A variational method is used to obtain discrete equations, and the essential boundary conditions are enforced by the penalty method. Compared with numerical methods based on mesh, the EFG method for KdV equations needs only scattered nodes instead of meshing the domain of the problem. It does not require any element connectivity and does not suffer much degradation in accuracy when nodal arrangements are very irregular. The effectiveness of the EFG method for the KdV equation is investigated by two numerical examples in this paper.
Keywords:  element-free Galerkin method      meshless method      KdV equation  
Received:  26 May 2009      Revised:  28 December 2009      Accepted manuscript online: 
PACS:  02.70.Dh (Finite-element and Galerkin methods)  
  02.30.Xx (Calculus of variations)  
  02.70.Rr (General statistical methods)  
Fund: Project supported by the Natural Science Foundation of Ningbo City (Grant No.~2009A610014), the Natural Science Foundation of Zhejiang Province (Grant No.~Y6090131), and the Research Foundation of Ningbo University of Technology (Grant No.~2008004).

Cite this article: 

Wang Ju-Feng(王聚丰), Sun Feng-Xin(孙凤欣), and Cheng Rong-Jun(程荣军) Element-free Galerkin method for a kind of KdV equation 2010 Chin. Phys. B 19 060201

[1] Korteweg D J and Vries G de 1895 Philos. Mag. 39 422
[2] Ames W (ed.) 1967 Proceedings of Symposium Non-linear Partial Differential Equations (New York: Academic Press) pp.~223--258
[3] Gardner C S and Greene J M 1967 Phys. Rev. Lett. 19 1095
[4] Gardner C S, Greene J M, Kruskal M D and Miura R M 1974 Comm. Pure Appl. Math. 27 97
[5] Hirota R 1971 Phys. Rev. Lett. 27 1192
[6] Hirota R 1973 J. Math. Phys. 14 805
[7] Fornberg B and Whitham G B 1978 Philos. Trans. Roy. Soc. 289 373
[8] Helal M A and Mehanna M A 2006 Chaos, Solitons and Fractals 28 320
[9] Turabi Geyikli and Kaya Dogan 2005 Appl. Math. Comput. 169 971
[10] Yan Z Y 2006 Nonlinear Anal. 64 901
[11] Turabi Geyikli and Dogan Kaya 2005 Appl. Math. Comput. 169 146
[12] Belytschko T, Krongauz Y and Organ D 1996 Comput. Meth. Appl. Mech. Engng. 139 3
[13] Monaghan J J 1988 Comput. Phys. Comm. 48 89
[14] Kansa E J 1990 Comput. Math. Appl. 19 127
[15] Belytschko T, Lu Y Y and Gu L 1994 Int. J. Numer. Meth. Engng. 37 229
[16] Atluri S N and Zhu T 1998 Comput. Mech. 22 117
[17] Onate E, Idelsohn S and Zienkiewicz O C 1996 Int. J. Numer. Meth. Engng. 39 3839
[18] Cheng R J and Cheng Y M 2008 Appl. Numer. Math. 58 884
[19] Cheng R J and Cheng Y M 2007 Acta Phys. Sin. 56 5569 (in Chinese)
[20] Dai B D and Cheng Y M 2007 Acta Phys. Sin. 56 597 (in Chinese)
[21] Liu W K, Jun S and Zhang Y F 1995 Int. J. Numer. Meth. Engng. 20 1081
[22] Cheng Y M and Chen M J 2003 Acta Mech. Sin. 35 181 (in Chinese)
[23] Cheng Y M and Peng M J 2005 Sci. Chin. Ser. G 48 641
[24] Cheng Y M and Li J H 2005 Acta Phys. Sin. 54 44 (in Chinese)
[25] Chen Li and Cheng Y M 2008 Acta Phys. Sin. 57 1 (in Chinese)
[26] Chen Li and Cheng Y M 2008 Acta Phys. Sin. 57 50 (in Chinese)
[27] Peng M J and Cheng Y M 2009 Eng. Anal. Bound. Elem. 23 77
[28] Lancaster P and Salkauskas K 1981 Math. Comput. 37 141
[29] Rubin S G and Graves R A 1975 Cubic Spline Approximation for Problems in Fluid Mehcanics (Washington, DC: Nasa TR) R-436
[1] Bifurcation analysis of visual angle model with anticipated time and stabilizing driving behavior
Xueyi Guan(管学义), Rongjun Cheng(程荣军), and Hongxia Ge(葛红霞). Chin. Phys. B, 2022, 31(7): 070507.
[2] Consistent Riccati expansion solvability, symmetries, and analytic solutions of a forced variable-coefficient extended Korteveg-de Vries equation in fluid dynamics of internal solitary waves
Ping Liu(刘萍), Bing Huang(黄兵), Bo Ren(任博), and Jian-Rong Yang(杨建荣). Chin. Phys. B, 2021, 30(8): 080203.
[3] Stability analysis of multiple-lattice self-anticipative density integration effect based on lattice hydrodynamic model in V2V environment
Geng Zhang(张埂) and Da-Dong Tian(田大东). Chin. Phys. B, 2021, 30(12): 120201.
[4] Painlevé property, local and nonlocal symmetries, and symmetry reductions for a (2+1)-dimensional integrable KdV equation
Xiao-Bo Wang(王晓波), Man Jia(贾曼), and Sen-Yue Lou(楼森岳). Chin. Phys. B, 2021, 30(1): 010501.
[5] A novel (2+1)-dimensional integrable KdV equation with peculiar solution structures
Sen-Yue Lou(楼森岳). Chin. Phys. B, 2020, 29(8): 080502.
[6] Nonlocal symmetries and similarity reductions for Korteweg-de Vries-negative-order Korteweg-de Vries equation
Heng-Chun Hu(胡恒春), Fei-Yan Liu(刘飞艳). Chin. Phys. B, 2020, 29(4): 040201.
[7] Decaying solitary waves propagating in one-dimensional damped granular chain
Zongbin Song(宋宗斌), Xueying Yang(杨雪滢), Wenxing Feng(封文星), Zhonghong Xi(席忠红), Liejuan Li(李烈娟), Yuren Shi(石玉仁). Chin. Phys. B, 2018, 27(7): 074501.
[8] Improved reproducing kernel particle method for piezoelectric materials
Ji-Chao Ma(马吉超), Gao-Feng Wei(魏高峰), Dan-Dan Liu(刘丹丹). Chin. Phys. B, 2018, 27(1): 010201.
[9] Topology optimization using the improved element-free Galerkin method for elasticity
Yi Wu(吴意), Yong-Qi Ma(马永其), Wei Feng(冯伟), Yu-Min Cheng(程玉民). Chin. Phys. B, 2017, 26(8): 080203.
[10] Meshless analysis of an improved element-free Galerkin method for linear and nonlinear elliptic problems
Yao-Zong Tang(唐耀宗), Xiao-Lin Li(李小林). Chin. Phys. B, 2017, 26(3): 030203.
[11] Two-dimensional fracture analysis of piezoelectric material based on the scaled boundary node method
Shen-Shen Chen(陈莘莘), Juan Wang(王娟), Qing-Hua Li(李庆华). Chin. Phys. B, 2016, 25(4): 040203.
[12] Bright and dark soliton solutions for some nonlinear fractional differential equations
Ozkan Guner, Ahmet Bekir. Chin. Phys. B, 2016, 25(3): 030203.
[13] Solving unsteady Schrödinger equation using the improved element-free Galerkin method
Rong-Jun Cheng(程荣军) and Yu-Min Cheng(程玉民). Chin. Phys. B, 2016, 25(2): 020203.
[14] New solutions from nonlocal symmetry of the generalized fifth order KdV equation
Liu Xi-Zhong (刘希忠), Yu Jun (俞军), Ren Bo (任博). Chin. Phys. B, 2015, 24(8): 080202.
[15] Hybrid natural element method for large deformation elastoplasticity problems
Ma Yong-Qi (马永其), Zhou Yan-Kai (周延凯). Chin. Phys. B, 2015, 24(3): 030204.
No Suggested Reading articles found!