Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(5): 050514    DOI: 10.1088/1674-1056/19/5/050514
GENERAL Prev   Next  

Distributed predictive control of spiral wave in cardiac excitable media

Gan Zheng-Ning(甘正宁)a)b) and Cheng Xin-Ming(成新明)c)
a Institute of Theoretical Physics, Lanzhou University, Lanzhou 730000, China;  College of Electronic and Information Engineering, Changsha University of Science & Technology, Changsha 410076, China;  c School of Information Science and Engineering, Central South University, Changsha 410082, China
Abstract  In this paper, we propose the distributed predictive control strategies of spiral wave in cardiac excitable media. The modified FitzHugh--Nagumo model was used to express the cardiac excitable media approximately. Based on the control-Lyapunov theory, we obtained the distributed control equation, which consists of a positive control-Lyapunov function and a positive cost function. Using the equation, we investigate two kinds of robust control strategies: the time-dependent distributed control strategy and the space-time dependent distributed control strategy. The feasibility of the strategies was demonstrated via an illustrative example, in which the spiral wave was prevented to occur, and the possibility for inducing ventricular fibrillation was eliminated. The strategies are helpful in designing various cardiac devices. Since the second strategy is more efficient and robust than the first one, and the response time in the second strategy is far less than that in the first one, the former is suitable for the quick-response control systems. In addition, our spatiotemporal control strategies, especially the second strategy, can be applied to other cardiac models, even to other reaction-diffusion systems.
Keywords:  spiral wave      FitzHugh--Nagumo model      control-Lyapunov function  
Received:  10 July 2009      Revised:  18 December 2009      Accepted manuscript online: 
PACS:  87.19.Hh (Cardiac dynamics)  
  87.17.-d (Cell processes)  
  05.45.-a (Nonlinear dynamics and chaos)  
  02.30.Yy (Control theory)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No.~10305005) and the Hunan Provincial Natural Science Foundation of China (Grant No.~07JJ6126).

Cite this article: 

Gan Zheng-Ning(甘正宁) and Cheng Xin-Ming(成新明) Distributed predictive control of spiral wave in cardiac excitable media 2010 Chin. Phys. B 19 050514

[1] Zhang C X, Liao H M and Ouyang Q J 2006 Phys. Chem. B 110 7508
[2] Ipsen M, Kramer L and Sorensen P G 2000 Phys. Rep. 337 193
[3] Aranson I S and Kramer L 2002 Rev. Mod. Phys. 74 99
[4] Mikhailov A S and Showalter K 2006 Phys. Rep. 425 79
[5] Hildebrand M, B\"{ar M and Eiswirth M 1995 Phys. Rev. Lett. 75 1503
[6] Agladze K, Kay M, Krinsky V and Sarvazyan N 2007 Am. J. Physiol. Heart Circ. Physiol. 293 503
[7] Holden A V 1997 Nature 387 655
[8] B\"{ar M, Brusch L and Or-Guil M 2004 Phys. Rev. Lett. 92 119801
[9] Yuan G Y, Chen S G and Yang S P 2007 Eur. Phys. J. B 58 331
[10] Wang H L 2004 Phys. Rev. Lett. 93 154101
[11] Wang P Y and Xie P 2000 Phys. Rev. E 61 5120
[12] Wang P Y, Xie P and Xin H W 2003 Chin. Phys. 12 674
[13] Zhang H, Hu B B and Hu G 2003 Phys. Rev. E 68 026134
[14] Zhang S L, Hu B B and Zhang H 2003 Phys. Rev. E 67 16214
[15] Ma J, Ying H P and Li Y L 2007 Chin. Phys. 16 955
[16] Winfree A T 2000 The Geometry of Biological Time 2rd ed (New York: Springer)
[17] Freeman R A and Kokotovic P V 2008 Robust Nonlinear Control Design (Boston: Birkh\"{auser)
[1] Applying a global pulse disturbance to eliminate spiral waves in models of cardiac muscle
Jian Gao(高见), Changgui Gu(顾长贵), and Huijie Yang(杨会杰). Chin. Phys. B, 2021, 30(7): 070501.
[2] Unpinning the spiral waves by using parameter waves
Lu Peng(彭璐) and Jun Tang(唐军). Chin. Phys. B, 2021, 30(5): 058202.
[3] Exploring the role of inhibitory coupling in duplex networks
Cui-Yun Yang(杨翠云), Guo-Ning Tang(唐国宁), Hai-Ying Liu(刘海英). Chin. Phys. B, 2017, 26(8): 088201.
[4] Effects of abnormal excitation on the dynamics of spiral waves
Min-Yi Deng(邓敏艺), Xue-Liang Zhang(张学良), Jing-Yu Dai(戴静娱). Chin. Phys. B, 2016, 25(1): 010504.
[5] A cellular automaton model for the ventricular myocardium considering the layer structure
Deng Min-Yi (邓敏艺), Dai Jing-Yu (戴静娱), Zhang Xue-Liang (张学良). Chin. Phys. B, 2015, 24(9): 090503.
[6] Motion of spiral tip driven by local forcing in excitable media
Liu Gui-Quan (刘贵泉), Ying He-Ping (应和平). Chin. Phys. B, 2014, 23(5): 050502.
[7] The effect of cellular aging on the dynamics of spiral waves
Deng Min-Yi (邓敏艺), Chen Xi-Qiong (陈茜琼), Tang Guo-Ning (唐国宁). Chin. Phys. B, 2014, 23(12): 120503.
[8] The influence of long-range links on spiral waves and its application for control
Qian Yu (钱郁). Chin. Phys. B, 2012, 21(8): 088201.
[9] Elimination of spiral waves and spatiotemporal chaos by the synchronization transmission technology of network signals
Zhang Qing-Ling(张庆灵), Lü Ling(吕翎), and Zhang Yi(张翼) . Chin. Phys. B, 2011, 20(9): 090514.
[10] Spiral-wave dynamics in excitable medium with excitability modulated by rectangle wave
Yuan Guo-Yong(袁国勇) . Chin. Phys. B, 2011, 20(4): 040503.
[11] Synchronizing spiral waves in a coupled Rössler system
Gao Jia-Zhen(高加振), Yang Shu-Xin(杨舒心), Xie Ling-Ling(谢玲玲), and Gao Ji-Hua(高继华) . Chin. Phys. B, 2011, 20(3): 030505.
[12] Lattice Boltzmann simulation for the energy and entropy of excitable systems
Deng Min-Yi(邓敏艺), Tang Guo-Ning(唐国宁), Kong Ling-Jiang(孔令江), and Liu Mu-Ren(刘慕仁) . Chin. Phys. B, 2011, 20(2): 020510.
[13] Size transition of spiral waves using the pulse array method
Xie Ling-Ling(谢玲玲) and Gao Ji-Hua(高继华). Chin. Phys. B, 2010, 19(6): 060516.
[14] Doppler instability of antispiral waves in discrete oscillatory reaction-diffusion media
Qian Yu(钱郁), Huang Xiao-Dong(黄晓东), Liao Xu-Hong(廖旭红), and Hu Gang(胡岗). Chin. Phys. B, 2010, 19(5): 050513.
[15] Controlling intracellular Ca2+ spiral waves by the local agonist in the cell membrane
Qiu Kang(仇康), Tang Jun(唐军), Ma Jun(马军), and Luo Ji-Ming(罗继明). Chin. Phys. B, 2010, 19(3): 030508.
No Suggested Reading articles found!