Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(5): 050302    DOI: 10.1088/1674-1056/19/5/050302
GENERAL Prev   Next  

Entanglement evolution in an anisotropic two-qubit Heisenberg XYZ model with Dzyaloshinskii-Moriya interaction

Chen Tao(陈涛), Huang Yan-Xia(黄燕霞), Shan Chuan-Jia(单传家), Li Jin-Xing(李金星), Liu Ji-Bing(刘继兵), and Liu Tang-Kun(刘堂昆)
College of Physics and Electronic Science, Hubei Normal University, Huangshi 435002, China
Abstract  This paper investigates the entanglement evolution of a two-qubit anisotropic Heisenberg XYZ chain in the presence of Dzyaloshinskii--Moriya interaction. The time evolution of the concurrence is studied for the initial pure entangled states $\cos \theta \left\vert 00\right\rangle +\sin \theta \left\vert 11\right\rangle $ and $\cos \phi \left\vert 01\right\rangle +\sin \phi \left\vert 10\right\rangle $ at zero temperature. The influences of Dzyaloshinskii--Moriya interaction $D$, anisotropic parameter $\varDelta$ and environment coupling strength $\gamma$ on entanglement evolution are analysed in detail. It is found that the effect of noisy environment obviously suppresses the entanglement evolution, and the Dzyaloshinskii--Moriya interaction $D$ acts on the time evolution of entanglement only when the initial state is $\cos \phi \left\vert 01\right\rangle +\sin \phi \left\vert 10\right\rangle $. Finally, a formula of steady state concurrence is obtained, and it is shown that the stable concurrence, which is independent of different initial states and Dzyaloshinskii--Moriya interaction $D$, depends on the anisotropic parameter $\varDelta$ and the environment coupling strength $\gamma$.
Keywords:  Heisenberg model      entanglement evolution      decoherence      Dzyaloshinskii--Moriya interaction  
Received:  03 August 2009      Revised:  13 October 2009      Accepted manuscript online: 
PACS:  75.10.Jm (Quantized spin models, including quantum spin frustration)  
  75.30.Gw (Magnetic anisotropy)  
  75.30.Et (Exchange and superexchange interactions)  
  03.65.Ud (Entanglement and quantum nonlocality)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No.~10904033), Educational Commission of Hubei Province (Grant No.~D20092204) and Natural Science Foundation of Hubei Normal University (Grant No.~2007D21).

Cite this article: 

Chen Tao(陈涛), Huang Yan-Xia(黄燕霞), Shan Chuan-Jia(单传家), Li Jin-Xing(李金星), Liu Ji-Bing(刘继兵), and Liu Tang-Kun(刘堂昆) Entanglement evolution in an anisotropic two-qubit Heisenberg XYZ model with Dzyaloshinskii-Moriya interaction 2010 Chin. Phys. B 19 050302

[1] Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881
[2] Cheng W W, Huang Y X, Liu T K and Li H 2007 Chin. Phys. 16 38
[3] Xie L J, Zhang D Y, Tang S Q, Zhan X G and Gao F 2009 Chin. Phys. B 18 3203
[4] Bennett C H, Brassard G, Cr\'{epeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[5] Huang L Y and Fang M F 2008 Chin. Phys. B 17 2339
[6] Hu X M and Liu J M 2009 Chin. Phys. B 18 0411
[7] Ekert A K 1991 Phys. Rev. Lett. 67 661
[8] Ciarc J I and Zoller P 1995 Phys. Rev. Lett. 74 4091
[9] Zhang X Z, Gong W G, Tan Y G, Ren Z Z and Guo X T 2009 Chin. Phys. B 18 2143
[10] Wang X G 2001 Phys. Rev. A 64 012313
[11] Kamta G L and Starace A F 2002 Phys. Rev. Lett. 88 107901
[12] O'Connor K M and Wootters W K 2001 Phys. Rev. A 63 052302
[13] Khveshchenko D V 2003 Phys. Rev. B 68 193307
[14] Zhang G F and Li S S 2005 Phys. Rev. A 72 034302
[15] Du X M, Man Z X and Xia Y J 2008 Acta Phys. Sin. 57 7457 (in Chinese)
[16] Shang C J, Cheng W W, Liu T K, Huang Y X and Li H 2008 Chin. Phys. B 17 4002
[17] Barenco A, Deutsch D and Ekert A 1995 Phys. Rev. Lett. 74 4083
[18] Loss D and DiVincenzo D P 1998 Phys. Rev. A 57 120
[19] Yu T and Eberly J H 2004 Phys. Rev. Lett. 93 140404
[20] Eberly J H and Yu T 2007 Science 316 579
[21] Yu T and Eberly J H 2006 Phys. Rev. Lett. 97 140403
[22] Ikram M, Li F L and Zubairy M S 2007 Phys. Rev. A 75 062336.
[23] Man Z X, Xia Y J and An N B 2008 J. Phys. B 41 085503
[24] Yang Q, Yang M and Cao Z L 2008 Chin. Phys. Lett. 25 825
[25] Chou C S, Yu T and Hu B L 2008 Phys. Rev. E 77 011112
[26] Gorden G and Kurizki G 2006 Phys. Rev. Lett. 97 110503
[27] Ficek Z and Tanas R 2008 Phys. Rev. A 77 054301
[28] Shan C J, Liu J B, Cheng W W, Liu T K, Huang Y X and Li H 2009 Commum. Theor. Phys. 51 1013
[29] Wang J, Batelaan H, Podany J and Starace A F 2006 J. Phys. B 39 4343
[30] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[31] Shan C J, Cheng W W, Liu T K, Liu J B and Wei H 2008 Chin. Phys. Lett. 25 3115
[32] Dzyaloshinskii I 1958 J. Phys. Chem. Solids 4 241
[33] Moriya T 1960 Phys. Rev. 120 91
[34] Zorko A, Nellutla S, van Tol L, Brunel L C, Bert F, Duc F, Trombe J-C, de Vries M A, Harrison A and Mendels P 2008 Phys. Rev. Lett. 101 026405
[35] Bennett C H, DiVincenzo D P, Smolin J A and Wootters W K 1996 Phys. Rev. A 54 3824
[36] Lindblad G 1976 Commun. Math. Phys. 48 199
[1] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[2] Green's function Monte Carlo method combined with restricted Boltzmann machine approach to the frustrated J1-J2 Heisenberg model
He-Yu Lin(林赫羽), Rong-Qiang He(贺荣强), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2022, 31(8): 080203.
[3] Ground-state phase diagram of the dimerizedspin-1/2 two-leg ladder
Cong Fu(傅聪), Hui Zhao(赵晖), Yu-Guang Chen(陈宇光), and Yong-Hong Yan(鄢永红). Chin. Phys. B, 2021, 30(8): 087501.
[4] Nonlocal advantage of quantum coherence and entanglement of two spins under intrinsic decoherence
Bao-Min Li(李保民), Ming-Liang Hu(胡明亮), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(7): 070307.
[5] Magnetic excitations of diagonally coupled checkerboards
Tingting Yan(颜婷婷), Shangjian Jin(金尚健), Zijian Xiong(熊梓健), Jun Li(李军), and Dao-Xin Yao(姚道新). Chin. Phys. B, 2021, 30(10): 107505.
[6] Quantum to classical transition induced by a classically small influence
Wen-Lei Zhao(赵文垒), Quanlin Jie(揭泉林). Chin. Phys. B, 2020, 29(8): 080302.
[7] Lifshitz transition in triangular lattice Kondo-Heisenberg model
Lan Zhang(张欄), Yin Zhong(钟寅), Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2020, 29(7): 077102.
[8] Geometric phase of an open double-quantum-dot system detected by a quantum point contact
Qian Du(杜倩), Kang Lan(蓝康), Yan-Hui Zhang(张延惠), Lu-Jing Jiang(姜露静). Chin. Phys. B, 2020, 29(3): 030302.
[9] The effect of phase fluctuation and beam splitter fluctuation on two-photon quantum random walk
Zijing Zhang(张子静), Feng Wang(王峰), Jie Song(宋杰), Yuan Zhao(赵远). Chin. Phys. B, 2020, 29(2): 020503.
[10] Exciton dynamics in different aromatic hydrocarbon systems
Milica Rutonjski†, Petar Mali, Slobodan Rado\v sevi\'c, Sonja Gombar, Milan Panti\'c, and Milica Pavkov-Hrvojevi\'c. Chin. Phys. B, 2020, 29(10): 107103.
[11] Dipole-dipole interactions enhance non-Markovianity and protect information against dissipation
Munsif Jan, Xiao-Ye Xu(许小冶), Qin-Qin Wang(王琴琴), Zhe Chen(陈哲), Yong-Jian Han(韩永建), Chuan-Feng Li(李传锋), Guang-Can Guo(郭光灿). Chin. Phys. B, 2019, 28(9): 090303.
[12] A primary model of decoherence in neuronal microtubules based on the interaction Hamiltonian between microtubules and plasmon in neurons
Zuoxian Xiang(向左鲜), Chuanxiang Tang(唐传祥), Lixin Yan(颜立新). Chin. Phys. B, 2019, 28(4): 048701.
[13] Physics of quantum coherence in spin systems
Maimaitiyiming Tusun(麦麦提依明·吐孙), Xing Rong(荣星), Jiangfeng Du(杜江峰). Chin. Phys. B, 2019, 28(2): 024204.
[14] Enhancing von Neumann entropy by chaos in spin-orbit entanglement
Chen-Rong Liu(刘郴荣), Pei Yu(喻佩), Xian-Zhang Chen(陈宪章), Hong-Ya Xu(徐洪亚), Liang Huang(黄亮), Ying-Cheng Lai(来颖诚). Chin. Phys. B, 2019, 28(10): 100501.
[15] Boundary states for entanglement robustness under dephasing and bit flip channels
Hong-Mei Li(李红梅), Miao-Di Guo(郭苗迪), Rui Zhang(张锐), Xue-Mei Su(苏雪梅). Chin. Phys. B, 2019, 28(10): 100302.
No Suggested Reading articles found!