Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(4): 047102    DOI: 10.1088/1674-1056/19/4/047102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

The energy levels of a two-electron two-dimensional parabolic quantum dot

Li Wei-Ping(李伟萍)a), Xiao Jing-Lin(肖景林)b),Yin Ji-Wen(尹辑文)a), Yu Yi-Fu(于毅夫)a), and Wang Zi-Wu(王子武)a)
a Department of Physics and Electronic Information Engineering, Chifeng College, Chifeng 024000, China; b College of Physics and Electronic Information, Inner Mongolia University for the Nationalities, Tongliao 028043, China
Abstract  This paper studies the two-electron total energy and the energy of the electron--electron interaction by using a variational method of Pekar type on the condition of electric--LO-phonon strong coupling in a parabolic quantum dot. It considers the following three cases: 1) two electrons are in the ground state; 2) one electron is in the ground state, the other is in the first-excited state; 3) two electrons are in the first-excited state. The relations of the two-electron total energy and the energy of the electron--electron interaction on the Coulomb binding parameter, the electron-LO-phonon coupling constant and the confinement length of the quantum dot are derived in the three cases.
Keywords:  quantum dot      electron--electron interaction      the variational method of Pekar type  
Received:  25 April 2009      Revised:  05 June 2009      Accepted manuscript online: 
PACS:  73.21.La (Quantum dots)  
  63.22.-m (Phonons or vibrational states in low-dimensional structures and nanoscale materials)  
  63.20.K- (Phonon interactions)  
  71.15.Nc (Total energy and cohesive energy calculations)  
  71.38.-k (Polarons and electron-phonon interactions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No.~10747002) and Inner Mongolia Universities Science Research Project (Grant No.~NJzc08158).

Cite this article: 

Li Wei-Ping(李伟萍), Xiao Jing-Lin(肖景林),Yin Ji-Wen(尹辑文), Yu Yi-Fu(于毅夫), and Wang Zi-Wu(王子武) The energy levels of a two-electron two-dimensional parabolic quantum dot 2010 Chin. Phys. B 19 047102

[1] Kastner M A 1993 Phys. Today 46 24
[2] Ashoori R C 1996 Natrue (London) 379 413
[3] Reed M A, Randall J N, Aggarwal R J, Matyi R J, Moore T M and Wetsel A E 1988 Phys. Rev. Lett. 60 535
[4] Kouwenhoven L P, Hekking F W J, van Wees B J, Harman C J P M, Timmering C E and Foxon C T 1990 Phys. Rev. Lett. 65] 361
[5] Hansen W, Smith T P, Lee K L, Brum J A, Knoedler C M, Hong J M and Kern D P 1989 Phys. Rev. Lett. 62 2168
[6] Ashoori R C, Stormer H L, Weiner J S, Pfeiffer L N, Baldwin K W and West K W 1993 Phys. Rev. Lett. 71 613
[7] Sikorski C and Merkt U 1989 Phys. Rev. Lett. 62 2164
[8] Merkt U, Huser J and Wagner M 1991 Phys. Rev. B 43 7320
[9] Bruce N A and Maksym P A 2000 Phys. Rev. B 61 }4718
[10] Kumar A, Laux S E and Stern F 1990 Phys. Rev. B 42 }5166
[11] Muller H M and Koonin S E 1996 Phys. Rev. B 54 }14532
[12] McKinney B A and Watson D K 2000 Phys. Rev. B 61 }4958
[13] Koskinen M, Manninen M and Reimann S M 1997 Phys. Rev. Lett. 79 1389
[14] Pederiva F, Umrigar C J and Lipparini E 2000 Phys. Rev. B 62 }8120
[15] Harting J, Mulken O and Borrmann P 2000 Phys. Rev. B 62 }10207
[16] Li S S and Xia J B 2007 Chin. Phys. 16 1
[17] Li S S and Xia J B 2006 J. Appl. Phys. 100 083714
[18] Li S S and Xia J B 2006 Chin. Phys. Lett. 23 1896
[19] Li S S, Xia J B, Yang F H, Niu Z C, Feng S L and Zheng H Z 2001 J. Appl. Phys. 90 }6151
[20] Yannouleas C and Landman U 2000 Phys. Rev. Lett. 85 1726
[21] Sun L L, Ma F C and Li S S 2003 J. Appl. Phys. 94 5884
[22] Dong Q R, Li S S, Niu Z C, Feng S L and Zheng H Z 2004 J. Appl. Phys. 96 3277
[23] Yildirim T and Ercelebi A 1999 J. Phys. Conden. Matt. 3 }1271 56
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[3] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[4] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
[5] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[6] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[7] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[8] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[9] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[10] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[11] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[12] Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi. Chin. Phys. B, 2022, 31(6): 068504.
[13] Chiral splitting of Kondo peak in triangular triple quantum dot
Yi-Ming Liu(刘一铭), Yuan-Dong Wang(王援东), and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(5): 057201.
[14] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[15] High-fidelity quantum sensing of magnon excitations with a single electron spin in quantum dots
Le-Tian Zhu(朱乐天), Tao Tu(涂涛), Ao-Lin Guo(郭奥林), and Chuan-Feng Li(李传锋). Chin. Phys. B, 2022, 31(12): 120302.
No Suggested Reading articles found!