Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(3): 030309    DOI: 10.1088/1674-1056/19/3/030309
GENERAL Prev   Next  

Entanglement dynamics of a double two-photon Jaynes-Cummings model with Kerr-like medium

Ouyang Xi-Cheng(欧阳锡城)a)b), Fang Mao-Fa(方卯发)a), Kang Guo-Dong(康国栋) a), Deng Xiao-Juan(邓小娟)a), and Huang Li-Yuan(黄利元)c)
a College of Physics and Information Science, Hunan Normal University, Changsha 410081, China; b College of Science, Hunan Agricultural University, Changsha 410128, China; c Department of Electronic and Communication Engineering, Changsha University, Changsha 410003, China
Abstract  In this paper, the entanglement dynamics of a double two-photon Jaynes--Cummings model with Kerr-like medium is investigated. It is shown that initial entanglement has an interesting subsequent time evolution, including the so-called entanglement sudden death effect. It is also shown analytically that the Kerr-like medium can repress entanglement sudden death and enhance the degree of atom--atom entanglement. A more interesting fact is that the Kerr effect is more obvious when each of the two cavities with have the Kerr-like medium than only one of them with the Kerr-like medium.
Keywords:  entanglement sudden death      concurrence      two-photon Jaynes--Cummings model      Kerr-like medium  
Received:  19 July 2009      Revised:  11 August 2009      Accepted manuscript online: 
PACS:  42.50.Dv (Quantum state engineering and measurements)  
  42.65.Hw (Phase conjugation; photorefractive and Kerr effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10374025), the Natural Science Foundation of Hunan Province of China (Grant No. 07JJ3013) and the Education Ministry of Hunan Province of China (Grant No. 06A038).

Cite this article: 

Ouyang Xi-Cheng(欧阳锡城), Fang Mao-Fa(方卯发), Kang Guo-Dong(康国栋), Deng Xiao-Juan(邓小娟), and Huang Li-Yuan(黄利元) Entanglement dynamics of a double two-photon Jaynes-Cummings model with Kerr-like medium 2010 Chin. Phys. B 19 030309

[1] Nielsen M A and Chuang I L 2000 Quantum Computation and QuantumInformation (Cambridge: Cambridge University Press)
[2] Walls D F and Milburn G J 2008 Quantum Optics (2nd ed)(Berlin Heidelberg: Springer)
[3] Wu Y and Yang X X 2006 Phys. Rev. D 73 067701
[4] Goebel A M, Wagenknecht C, Zhang Q, Chen Y A, Chen K, Schmiedmayer Jand Pan J W 2008 Phys. Rev. Lett. 101 080403
[5] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A andWootters W K 1993 Phys. Rev. Lett. 701895
[6] Lu H and Guo G C 2000 Phys. Lett. A 276 209
[7] Liao J Q and Kuang L M 2006 Phys. Lett. A 358 115
[8] Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881
[9] Ekert A K 1991 Phys. Rev. Lett. 67 661
[10] Yu T and Eberly J H 2009 Science 323 598
[11] Almeida M P, de Melo F, Hor-Meyll M, Salles A, Walborn S P, RibeiroP H S and Davidovich L 2007 Science 316 579
[12] Mazzola L, Maniscalco S, Piilo J, Suominen K A and Garraway B M 2009 Phys. Rev. A 79 042302
[13] Shan C J, Cheng W W, Liu T K, Liu J B and Wei H 2008 Chin.Phys. Lett. 25 3115
[14] Zhang G F 2007 Chin. Phys. 16 1855
[15] Deng X J and Fang M F 2008 Chin. Phys. B 17 3209
[16] Man Z X and Xia Y J 2008 Chin. Phys. B 17 3198
[17] Chen L, Shao X Q and Zhang S 2009 Chin. Phys. B 18 888
[18] Zeng H F, Shao B, Yang L G, Li J and Zou J 2009 Chin. Phys. B 18 3265
[19] Salles A, de Melo F, Almeida M P, Hor-Meyll M, Walborn S P, RibeiroP H S and Davidovich L 2008 Phys. Rev. A 78 022322
[20] Yamamoto N, Nurdin H I, James M R and Petersen I R 2008 Phys. Rev. A 78 042339
[21] Zhang J S, Xu J B and Lin Q 2009 Eur. Phys. J. D 51 283
[22] Sainz I and Bj?rk G 2008 Phys. Rev. A 77 052307
[23] Hu Y H, Fang M F, Cai J W, Zeng K and Jiang C L 2008 J. Mod.Opt. 55 3551
[24] Wu Y and Yang X X 1997 Phys. Rev. Lett. 78 3086
[25] Fang M F and Liu H E 1995 Phys. Lett. A 200 250
[26] Fang M F and Liu X 1996 Phys. Lett. A 210 11
[27] Zheng Q, Zhang X P and Ren Z Z 2008 Chin. Phys. B 173553
[28] Joshi A and Puri R R 1992 Phys. Rev. A 45 5056
[29] Hill S and Wootters W K 1997 Phys. Rev. Lett. 78 5022
[30] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[31] Y?nac M, Yu T and Eberly J H 2006 J. Phys. B 39 S621
[32] Y?nac M, Yu T and Eberly J H 2007 J. Phys. B 40 S45
[1] Robustness of two-qubit and three-qubit states in correlated quantum channels
Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Chin. Phys. B, 2022, 31(7): 070302.
[2] Entanglement of two distinguishable atoms in a rectangular waveguide: Linear approximation with single excitation
Jing Li(李静), Lijuan Hu(胡丽娟), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2021, 30(9): 090307.
[3] Dissipative dynamics of an entangled three-qubit system via non-Hermitian Hamiltonian: Its correspondence with Markovian and non-Markovian regimes
M Rastegarzadeh and M K Tavassoly. Chin. Phys. B, 2021, 30(3): 034205.
[4] Protecting the entanglement of two-qubit over quantum channels with memory via weak measurement and quantum measurement reversal
Mei-Jiao Wang(王美姣), Yun-Jie Xia(夏云杰), Yang Yang(杨阳), Liao-Zhen Cao(曹连振), Qin-Wei Zhang(张钦伟), Ying-De Li(李英德), and Jia-Qiang Zhao(赵加强). Chin. Phys. B, 2020, 29(11): 110307.
[5] Entanglement teleportation via a couple of quantum channels in Ising-Heisenberg spin chain model of a heterotrimetallic Fe-Mn-Cu coordination polymer
Yi-Dan Zheng(郑一丹), Zhu Mao(毛竹), Bin Zhou(周斌). Chin. Phys. B, 2019, 28(12): 120307.
[6] Direct measurement of the concurrence of hybrid entangled state based on parity check measurements
Man Zhang(张曼), Lan Zhou(周澜), Wei Zhong(钟伟), Yu-Bo Sheng(盛宇波). Chin. Phys. B, 2019, 28(1): 010301.
[7] Dynamics of entanglement protection of two qubits using a driven laser field and detunings: Independent and common, Markovian and/or non-Markovian regimes
S Golkar, M K Tavassoly. Chin. Phys. B, 2018, 27(4): 040303.
[8] Some studies of the interaction between two two-level atoms and SU(1, 1) quantum systems
T M El-Shahat, M Kh Ismail. Chin. Phys. B, 2018, 27(10): 100201.
[9] Comparative analysis of entanglement measures based on monogamy inequality
P J Geetha, Sudha, K S Mallesh. Chin. Phys. B, 2017, 26(5): 050301.
[10] Optimizing quantum correlation dynamics by weak measurement in dissipative environment
Du Shao-Jiang (杜少将), Xia Yun-Jie (夏云杰), Duan De-Yang (段德洋), Zhang Lu (张路), Gao Qiang (高强). Chin. Phys. B, 2015, 24(4): 044205.
[11] Monogamous nature of symmetric N-qubit states of the W class: Concurrence and negativity tangle
P. J. Geetha, K. O. Yashodamma, Sudha. Chin. Phys. B, 2015, 24(11): 110302.
[12] Entanglement dynamics of a three-qubit system with different interatomic distances
Feng Ling-Juan (封玲娟), Zhang Ying-Jie (张英杰), Zhang Lu (张路), Xia Yun-Jie (夏云杰). Chin. Phys. B, 2015, 24(11): 110305.
[13] Preparation of multi-photon Fock states and quantum entanglement properties in circuit QED
Ji Ying-Hua (嵇英华), Hu Ju-Ju (胡菊菊). Chin. Phys. B, 2014, 23(4): 040307.
[14] Entanglement of two two-level atoms trapped in coupled cavities with a Kerr medium
Wu Qin (吴琴), Zhang Zhi-Ming (张智明). Chin. Phys. B, 2014, 23(3): 034203.
[15] Controllable preparation of two-mode entangled coherent states in circuit QED
Ji Ying-Hua (嵇英华), Liu Yong-Mei (刘咏梅). Chin. Phys. B, 2014, 23(11): 110303.
No Suggested Reading articles found!