Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(2): 025201    DOI: 10.1088/1674-1056/19/2/025201
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Experimental observation of ionization and shock fronts in foam targets driven by thermal radiation

Zhang Ji-Yan(张继彦)a)†, Yang Jia-Min(杨家敏)a), Jiang Shao-En(江少恩)a), Li Yong-Sheng(李永升)b), Yang Guo-Hong(杨国洪) a), Ding Yao-Nan(丁耀南)a), Huang Yi-Xiang(黄翼翔)a), and Hu Xin(胡昕)a)
a Research Centre of Laser Fusion, P. O. Box 919-986, Mianyang 621900, China; b Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
Abstract  The behaviours of ionization and shock propagation in radiatively heated material is crucial for the understanding of indirect drive inertial confinement fusion as well as some astrophysics phenomena. In this work, radiation field with a peak temperature of up to 155 eV was generated in a gold cavity heated by four laser beams on the SG-II laser system and was used to irradiate a plastic foam cylinder at one end. The radiatively ablated foam cylinder was then backlighted side-on by x-ray from a laser-irradiated Ti disk. By observing the transmission decrease due to the shock compression of the foam cylinder, the trajectories of shock front were measured, and from the onset of the intense thermal emission from the side of the cylinder, the propagations of the ionization front were also observed on the same shot. The experimental measurements were compared to predictions of the radiation hydrodynamics code Multi-1D and reasonable agreements were found.
Keywords:  ionization wave      shock wave      x-ray radiography  
Received:  01 May 2009      Revised:  21 May 2009      Accepted manuscript online: 
PACS:  52.50.Jm (Plasma production and heating by laser beams (laser-foil, laser-cluster, etc.))  
  52.35.Tc (Shock waves and discontinuities)  
  28.52.Fa (Materials)  
Fund: Project supported by the Science and Technology Fund of the China Academy of Engineering Physics (Grant No. 2007B08003).

Cite this article: 

Zhang Ji-Yan(张继彦), Yang Jia-Min(杨家敏), Jiang Shao-En(江少恩), Li Yong-Sheng(李永升), Yang Guo-Hong(杨国洪), Ding Yao-Nan(丁耀南), Huang Yi-Xiang(黄翼翔), and Hu Xin(胡昕) Experimental observation of ionization and shock fronts in foam targets driven by thermal radiation 2010 Chin. Phys. B 19 025201

[1] Lindl J D 1998 Inertial Confinement Fusion (New York:Springer-Verlag)
[2] Afsar-rad T, Desselberger M, Dunne M, Edwards J, Foster J M, Hoarty D,Jones M W, Rose S J, Rosen P A, Taylor R and Willi O 1994 Phys. Rev. Lett. 7 3 74
[3] Olson R E, Leeper R J, Nobile A and Oertel J A 2004 Phys. Plasmas 11 2778
[4] Back C A, Bauer J D, Hammer J H, Lasinski B F, Turner R E, Rambo P W,Landen O L, Suter L J, Rosen M D and Hsing W W 2000 Phys.Plasmas 7 2126
[5] Pasley J, Nilson P, Haines M G, Notley M M, Tolley M, Neely D and NazarovW 2002/2003 Central Laser Facility Annual Report}
[6] Drake R P, Carroll III J J, Estabrook K, Glendinning S G, Remington B A,Wallace R and McCray R 1998 The Astrophysical Journal 500 L157
[7] Marshak R E 1958 Phys. Fluids 1 24
[8] Zel'Dovich Y B and Raizer Y P 1966 Physics of Shock Wave andHigh-Temperature Hydrodynamic Phenomena (New York: Academic)
[9] Sigel R, Tsakiris G D, Lavarenne F, Massen J, Fedosejevs R, Eidmann K,Meyer-ter-Vehn J, Murakami M, Witkowski S, Nishimura H, Kato Y,Takabe H, Endo T, Kondo K, Shiraga H, Sakabe S, Jitsuno T, Takagi M,Nakai S and Yamanaka C 1992 Phys. Rev. A 45 3987
[10] Kaiser N, Meyer-ter-Vehn J and Sigel R 1989 Phys. Fluids B 1 1747
[11] Hoarty D, Iwase A, Meyer C, Edwards J and Willi O 1997 Phys. Rev. Lett. 783322
[12] Hoarty D, Barringer L, Vickers C, Willi O and Nazarov W 1999 Phys. Rev. Lett. 82 3070
[13] Hammer B A, Kilkenny J D, Munro D, Remington B A, Kornblum H N, Perry TS, Phillion D W and Wallace R J 1994 Phys. Plasmas 11662
[14] Sigel R, Tsakiris G D, Lavarenne F, Massen J, Fedosejevs R,Meyer-ter-Vehn J, Murakami M, Eidmann K, Witkowski S, Nishimura H,Kato Y, Takabe H, Endo T, Kondo K, Shiraga H, Sakabe S, Jitsuno T,Takagi M, Yamanaka C and Nakai S 1990 Phys. Rev. Lett. 65 587
[15] Schwanda W and Eidmann K 1992 Phys. Rev. Lett. 69 3507
[16] Edwards J, Dunne M, Riley D, Taylor R, Willi O and Rose S J 1991 Phys. Rev.Lett. 67 3780
[17] Ramis R, Schmalz R and Meyer-Ter-Vehn J 1988 Comput. Phys.Commun. 49 475
[1] Generation of laser-driven flyer dominated by shock-induced shear bands: A molecular dynamics simulation study
Deshen Geng(耿德珅), Danyang Liu(刘丹阳), Jianying Lu(鲁建英), Chao Chen(陈超), Junying Wu(伍俊英), Shuzhou Li(李述周), and Lang Chen(陈朗). Chin. Phys. B, 2022, 31(2): 024101.
[2] Comparative investigation of microjetting generated from monocrystalline tin surface and polycrystalline tin surface under plane impact loading
Shao-Wei Sun(孙少伟), Guan-Qing Tang(汤观晴), Ya-Fei Huang(黄亚飞), Liang-Zhi Cao(曹良志), and Xiao-Ping Ouyang(欧阳晓平). Chin. Phys. B, 2021, 30(10): 104701.
[3] Experimental investigation on the properties of liquid film breakup induced by shock waves
Xianzhao Song(宋先钊), Bin Li(李斌), Lifeng Xie(解立峰). Chin. Phys. B, 2020, 29(8): 086201.
[4] Studies of flow field characteristics during the impact of a gaseous jet on liquid-water column
Jian Wang(王健), Wen-Jun Ruan(阮文俊), Hao Wang(王浩), Li-Li Zhang(张莉莉). Chin. Phys. B, 2019, 28(6): 064704.
[5] Investigation of convergent Richtmyer-Meshkov instability at tin/xenon interface with pulsed magnetic driven imploding
Shaolong Zhang(张绍龙), Wei Liu(刘伟), Guilin Wang(王贵林), Zhengwei Zhang(章征伟), Qizhi Sun(孙奇志), Zhaohui Zhang(张朝辉), Jun Li(李军), Yuan Chi(池原), Nanchuan Zhang(张南川). Chin. Phys. B, 2019, 28(4): 044702.
[6] Study on shock wave-induced cavitation bubbles dissolution process
Huan Xu(许欢), Peng-Fei Fan(范鹏飞), Yong Ma(马勇), Xia-Sheng Guo(郭霞生), Ping Yang(杨平), Juan Tu(屠娟), Dong Zhang(章东). Chin. Phys. B, 2017, 26(2): 024301.
[7] Lower order three-dimensional Burgers equation having non-Maxwellian ions in dusty plasmas
Apul N Dev. Chin. Phys. B, 2017, 26(2): 025203.
[8] Conditions for laser-induced plasma to effectively remove nano-particles on silicon surfaces
Jinghua Han(韩敬华), Li Luo(罗莉), Yubo Zhang(张玉波), Ruifeng Hu(胡锐峰), Guoying Feng(冯国英). Chin. Phys. B, 2016, 25(9): 095204.
[9] Influence of shockwave profile on ejecta from shocked Pb surface: Atomistic calculations
Guo-Wu Ren(任国武), Shi-Wen Zhang(张世文), Ren-Kai Hong(洪仁楷), Tie-Gang Tang(汤铁钢), Yong-Tao Chen(陈永涛). Chin. Phys. B, 2016, 25(8): 086202.
[10] Laser-driven flier impact experiments at the SG-III prototype laser facility
Shui Min (税敏), Chu Gen-Bai (储根柏), Xin Jian-Ting (辛建婷), Wu Yu-Chi (吴玉迟), Zhu Bin (朱斌), He Wei-Hua (何卫华), Xi Tao (席涛), Gu Yu-Qiu (谷渝秋). Chin. Phys. B, 2015, 24(9): 094701.
[11] Sound field prediction of ultrasonic lithotripsy in water with spheroidal beam equations
Zhang Lue (张略), Wang Xiang-Da (王祥达), Liu Xiao-Zhou (刘晓宙), Gong Xiu-Fen (龚秀芬). Chin. Phys. B, 2015, 24(1): 014301.
[12] Shadowgraph investigation of plasma shock wave evolution from Al target under 355-nm laser ablation
Liu Tian-Hang (刘天航), Hao Zuo-Qiang (郝作强), Gao Xun (高勋), Liu Ze-Hao (刘泽昊), Lin Jing-Quan (林景全). Chin. Phys. B, 2014, 23(8): 085203.
[13] The internal propagation of fusion flame with the strong shock of a laser driven plasma block for advanced nuclear fuel ignition
B. Malekynia, S. S. Razavipour. Chin. Phys. B, 2013, 22(5): 055202.
[14] Effects of density profile and multi-species target on laser-heated thermal-pressure-driven shock wave acceleration
Wang Feng-Chao (王凤超). Chin. Phys. B, 2013, 22(12): 124102.
[15] Effects of bi-kappa distributed electrons on dust-ion-acoustic shock waves in dusty superthermal plasmas
M. S. Alam, M. M. Masud, A. A. Mamun. Chin. Phys. B, 2013, 22(11): 115202.
No Suggested Reading articles found!