Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(1): 010203    DOI: 10.1088/1674-1056/19/1/010203
GENERAL Prev   Next  

A singularly perturbed reaction diffusion problem for the nonlinear boundary condition with two parameters

Mo Jia-Qi(莫嘉琪)
Department of Mathematics, Anhui Normal University, Wuhu 241000, China
Abstract  A class of singularly perturbed initial boundary value problems of reaction diffusion equations for the nonlinear boundary condition with two parameters is considered. Under suitable conditions, by using the theory of differential inequalities, the existence and the asymptotic behaviour of the solution for the initial boundary value problem are studied. The obtained solution indicates that there are initial and boundary layers and the thickness of the boundary layer is less than the thickness of the initial layer.
Keywords:  nonlinear      two parameters      singular perturbation  
Received:  20 May 2009      Revised:  09 June 2009      Accepted manuscript online: 
PACS:  05.60.-k (Transport processes)  
  02.30.Jr (Partial differential equations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 40676016 and 40876010), the Knowledge Innovation Project of Chinese Academy of Sciences (Grant No. KZCX2-YW-Q03-08), the Natiural Science Foundation of Zhejiang Province of China (Grant No. 6090164) and in part by E-Institutes of Shanghai Municipal Education Commission (Grant No. E03004).

Cite this article: 

Mo Jia-Qi(莫嘉琪) A singularly perturbed reaction diffusion problem for the nonlinear boundary condition with two parameters 2010 Chin. Phys. B 19 010203

[1] de Jager E M and Jiang Furu 1996 The Theory of Singular Perturbation (Amsterdam: North-Holland Publishing Co.)
[2] Ni W M and Wei J C 2006 J. Diff. Eqns. 221 158
[3] Bartier J P 2006 Asymptotic Anal. 46 325
[4] Dibre J, da Silva P R and Teixeira M A 2007 J. Dyn. Differ. Equs. 19 309
[5] Duehring D and Huang W Z 2007 J. Dyn. Differ. Eqns. 19 457
[6] Guarguaglini F R and Natalini R 2007 Partial Differ. Equations 32 163
[7] Mo J Q 1993 J. Math. Anal. Appl. 178 289
[8] Mo J Q 1989 Science in China Ser. A 32 1306
[9] Mo J Q and Lin W T 2005 Acta Math. Appl. Sinica 21 101 (in Chinese)
[10] Mo J Q, Zhang W J and He M 2007 Acta Math. Sci. 27 777
[11] Mo J Q 2006 Advances in Math. 35 75
[12] Mo J Q, Zhu J and Wang H 2003 Prog. Nat. Sci. 13 768
[13] Mo J Q 2009 Chin. Phys. Lett. 26 010204-1
[14] Mo J Q 2009 Acta Phys. Sin. 58 693 (in Chinese)
[15] Mo J Q 2009 Acta Phys. Sin. 58 2930 (in Chinese)
[16] Mo J Q and Wang H 2007 Acta Ecologica Sin. 27 4366
[17] Mo J Q and Lin W T 2008 J. Sys. Sci. & Complexity 20 119
[18] Mo J Q, Lin W T and Wang H 2007 Prog. Nat. Sci. 17 230
[19] Mo J Q, Lin W T and Wang H 2007 Chin. Phys. 16 951
[20] Mo J Q and Lin W T 2008 Chin. Phys. B 17 370
[21] Mo J Q and Lin W T 2008 Chin. Phys. B 17 743
[22] Mo J Q and Lin W T 2007 Acta Phys. Sin. 56 3662 (in Chinese)
[23] Mo J Q and Lin W T 2008 Appl. Math. J. Chin. Univ. 23 251
[24] Mo J Q 2008 Adv. In Math. 37 83
[25] Mo J Q, Lin W T and Wang H 2009 Acta Math. Sci. 29 101
[1] All-optical switches based on three-soliton inelastic interaction and its application in optical communication systems
Shubin Wang(王树斌), Xin Zhang(张鑫), Guoli Ma(马国利), and Daiyin Zhu(朱岱寅). Chin. Phys. B, 2023, 32(3): 030506.
[2] Coupled-generalized nonlinear Schrödinger equations solved by adaptive step-size methods in interaction picture
Lei Chen(陈磊), Pan Li(李磐), He-Shan Liu(刘河山), Jin Yu(余锦), Chang-Jun Ke(柯常军), and Zi-Ren Luo(罗子人). Chin. Phys. B, 2023, 32(2): 024213.
[3] Quantitative analysis of soliton interactions based on the exact solutions of the nonlinear Schrödinger equation
Xuefeng Zhang(张雪峰), Tao Xu(许韬), Min Li(李敏), and Yue Meng(孟悦). Chin. Phys. B, 2023, 32(1): 010505.
[4] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[5] Deep-learning-based cryptanalysis of two types of nonlinear optical cryptosystems
Xiao-Gang Wang(汪小刚) and Hao-Yu Wei(魏浩宇). Chin. Phys. B, 2022, 31(9): 094202.
[6] Numerical investigation of the nonlinear spectral broadening aiming at a few-cycle regime for 10 ps level Nd-doped lasers
Xi-Hang Yang(杨西杭), Fen-Xiang Wu(吴分翔), Yi Xu(许毅), Jia-Bing Hu(胡家兵), Pei-Le Bai(白培乐), Hai-Dong Chen(陈海东), Xun Chen(陈洵), and Yu-Xin Leng(冷雨欣). Chin. Phys. B, 2022, 31(9): 094206.
[7] Exponential sine chaotification model for enhancing chaos and its hardware implementation
Rui Wang(王蕊), Meng-Yang Li(李孟洋), and Hai-Jun Luo(罗海军). Chin. Phys. B, 2022, 31(8): 080508.
[8] Influence of optical nonlinearity on combining efficiency in ultrashort pulse fiber laser coherent combining system
Yun-Chen Zhu(朱云晨), Ping-Xue Li(李平雪), Chuan-Fei Yao(姚传飞), Chun-Yong Li(李春勇),Wen-Hao Xiong(熊文豪), and Shun Li(李舜). Chin. Phys. B, 2022, 31(6): 064201.
[9] Collision enhanced hyper-damping in nonlinear elastic metamaterial
Miao Yu(于淼), Xin Fang(方鑫), Dianlong Yu(郁殿龙), Jihong Wen(温激鸿), and Li Cheng(成利). Chin. Phys. B, 2022, 31(6): 064303.
[10] Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schrödinger equation
Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德炉). Chin. Phys. B, 2022, 31(6): 060201.
[11] Role of the zonal flow in multi-scale multi-mode turbulence with small-scale shear flow in tokamak plasmas
Hui Li(李慧), Jiquan Li(李继全), Zhengxiong Wang(王正汹), Lai Wei(魏来), and Zhaoqing Hu(胡朝清). Chin. Phys. B, 2022, 31(6): 065207.
[12] Generation of mid-infrared supercontinuum by designing circular photonic crystal fiber
Ying Huang(黄颖), Hua Yang(杨华), and Yucheng Mao(毛雨澄). Chin. Phys. B, 2022, 31(5): 054211.
[13] Noncollinear phase-matching geometries in ultra-broadband quasi-parametric amplification
Ji Wang(王佶), Yanqing Zheng(郑燕青), and Yunlin Chen(陈云琳). Chin. Phys. B, 2022, 31(5): 054213.
[14] All polarization-maintaining Er:fiber-based optical frequency comb for frequency comparison of optical clocks
Pan Zhang(张攀), Yan-Yan Zhang(张颜艳), Ming-Kun Li(李铭坤), Bing-Jie Rao(饶冰洁), Lu-Lu Yan(闫露露), Fa-Xi Chen(陈法喜), Xiao-Fei Zhang(张晓斐), Qun-Feng Chen(陈群峰), Hai-Feng Jiang(姜海峰), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2022, 31(5): 054210.
[15] Scanning the optical characteristics of lead-free cesium titanium bromide double perovskite nanocrystals
Chenxi Yu(于晨曦), Long Gao(高龙), Wentong Li(李文彤), Qian Wang(王倩), Meng Wang(王萌), and Jiaqi Zhang(张佳旗). Chin. Phys. B, 2022, 31(5): 054218.
No Suggested Reading articles found!