Please wait a minute...
Chin. Phys. B, 2009, Vol. 18(8): 3104-3114    DOI: 10.1088/1674-1056/18/8/002
GENERAL Prev   Next  

Automatic generation of min-weighted persistent formations

Luo Xiao-Yuan(罗小元), Li Shao-Bao(李绍宝), and Guan Xin-Ping(关新平)
Department of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China
Abstract  This paper researched into some methods for generating min-weighted rigid graphs and min-weighted persistent graphs. Rigidity and persistence are currently used in various studies on coordination and control of autonomous multi-agent formations. To minimize the communication complexity of formations and reduce energy consumption, this paper introduces the rigidity matrix and presents three algorithms for generating min-weighted rigid and min-weighted persistent graphs. First, the existence of a min-weighted rigid graph is proved by using the rigidity matrix, and algorithm 1 is presented to generate the min-weighted rigid graphs. Second, the algorithm 2 based on the rigidity matrix is presented to direct the edges of min-weighted rigid graphs to generate min-weighted persistent graphs. Third, the formations with range constraints are considered, and algorithm 3 is presented to find whether a framework can form a min-weighted persistent formation. Finally, some simulations are given to show the efficiency of our research.
Keywords:  min-weighted persistent graph      rigidity matrix      minimally rigid graph      formation      multi-agent  
Received:  13 December 2008      Revised:  31 December 2008      Accepted manuscript online: 
PACS:  02.10.Ox (Combinatorics; graph theory)  
  02.10.Yn (Matrix theory)  
  02.30.Yy (Control theory)  
  84.40.Ua (Telecommunications: signal transmission and processing; communication satellites)  
  89.75.Hc (Networks and genealogical trees)  
Fund: Project supported by the National Natural Science Foundation for Distinguished Young Scholars of China (Grant No 60525303), the National Natural Science Foundation of China (Grant No 60704009) and Doctor Fund of Yanshan University (Grant No B203).

Cite this article: 

Luo Xiao-Yuan(罗小元), Li Shao-Bao(李绍宝), and Guan Xin-Ping(关新平) Automatic generation of min-weighted persistent formations 2009 Chin. Phys. B 18 3104

[1] Positon and hybrid solutions for the (2+1)-dimensional complex modified Korteweg-de Vries equations
Feng Yuan(袁丰) and Behzad Ghanbari. Chin. Phys. B, 2023, 32(4): 040201.
[2] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[3] Effect of bio-tissue deformation behavior due to intratumoral injection on magnetic hyperthermia
Yundong Tang(汤云东), Jian Zou(邹建), Rodolfo C.C. Flesch, and Tao Jin(金涛). Chin. Phys. B, 2023, 32(3): 034304.
[4] Non-Markovianity of an atom in a semi-infinite rectangular waveguide
Jing Zeng(曾静), Yaju Song(宋亚菊), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(3): 030305.
[5] Real-time observation of soliton pulsation in net normal-dispersion dissipative soliton fiber laser
Xu-De Wang(汪徐德), Xu Geng(耿旭), Jie-Yu Pan(潘婕妤), Meng-Qiu Sun(孙梦秋), Meng-Xiang Lu(陆梦想), Kai-Xin Li(李凯芯), and Su-Wen Li(李素文). Chin. Phys. B, 2023, 32(2): 024210.
[6] Transformation relation between coherence and entanglement for two-qubit states
Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Chin. Phys. B, 2023, 32(1): 010304.
[7] Formation of quaternary all-d-metal Heusler alloy by Co doping fcc type Ni2MnV and mechanical grinding induced B2-fcc transformation
Lu Peng(彭璐), Qiangqiang Zhang(张强强), Na Wang(王娜), Zhonghao Xia(夏中昊), Yajiu Zhang(张亚九),Zhigang Wu(吴志刚), Enke Liu(刘恩克), and Zhuhong Liu(柳祝红). Chin. Phys. B, 2023, 32(1): 017102.
[8] Molecular dynamics simulation of interaction between nanorod and phospholipid molecules bilayer
Xin Wang(王鑫), Xiang-Qin Li(李香琴), Tian-Qing Liu(刘天庆), Li-Dan Zhao(赵丽丹), Ke-Dong Song(宋克东), and Dan Ge(葛丹). Chin. Phys. B, 2023, 32(1): 016201.
[9] Improving the teleportation of quantum Fisher information under non-Markovian environment
Yan-Ling Li(李艳玲), Yi-Bo Zeng(曾艺博), Lin Yao(姚林), and Xing Xiao(肖兴). Chin. Phys. B, 2023, 32(1): 010303.
[10] Amorphous transformation of ternary Cu45Zr45Ag10 alloy under microgravity condition
Ming-Hua Su(苏明华), Fu-Ping Dai(代富平), and Ying Ruan(阮莹). Chin. Phys. B, 2022, 31(9): 098106.
[11] Bioinspired tactile perception platform with information encryption function
Zhi-Wen Shi(石智文), Zheng-Yu Ren(任征宇), Wei-Sheng Wang(王伟胜), Hui Xiao(肖惠), Yu-Heng Zeng(曾俞衡), and Li-Qiang Zhu(竺立强). Chin. Phys. B, 2022, 31(9): 098506.
[12] A modified heuristics-based model for simulating realistic pedestrian movement behavior
Wei-Li Wang(王维莉), Hai-Cheng Li(李海城), Jia-Yu Rong(戎加宇), Qin-Qin Fan(范勤勤), Xin Han(韩新), and Bei-Hua Cong(丛北华). Chin. Phys. B, 2022, 31(9): 094501.
[13] Synchronously scrambled diffuse image encryption method based on a new cosine chaotic map
Xiaopeng Yan(闫晓鹏), Xingyuan Wang(王兴元), and Yongjin Xian(咸永锦). Chin. Phys. B, 2022, 31(8): 080504.
[14] Sound-transparent anisotropic media for backscattering-immune wave manipulation
Wei-Wei Kan(阚威威), Qiu-Yu Li(李秋雨), and Lei Pan(潘蕾). Chin. Phys. B, 2022, 31(8): 084302.
[15] Design method of reusable reciprocal invisibility and phantom device
Cheng-Fu Yang(杨成福), Li-Jun Yun(云利军), and Jun-Wei Li(李俊玮). Chin. Phys. B, 2022, 31(8): 084101.
No Suggested Reading articles found!