Please wait a minute...
Chin. Phys. B, 2009, Vol. 18(7): 2703-2708    DOI: 10.1088/1674-1056/18/7/013
GENERAL Prev   Next  

Dynamic characteristics and simulation of traffic flow with slope

He Hong-Di(何红弟)a), Lu Wei-Zhen(卢伟真)a)†, Xue Yu(薛郁)b), and Dong Li-Yun(董力耘)c)
a Department of Building and Construction, City University of Hong Kong, Hong Kong, China; b Department of Physical, University of Guang Xi, Nanning 530004, China; c Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China
Abstract  This paper proposes a new traffic model to describe traffic flow with slope under consideration of the gravity effect. Based on the model, stability analysis is conducted and a numerical simulation is performed to explore the characteristics of the traffic flow with slope. The result shows that the perturbation of the system is an inherent one, which is induced by the slope. In addition, the hysteresis loop is represented through plotting the figure of velocity against headway and highly depends on the slope angle. The kinematic wave at high density is also obtained through reproducing the phenomenon of stop-and-go traffic, which is significant to explore the phase transition of traffic flow and the evolution of traffic congestion.
Keywords:  traffic flow      perturbation      stability analysis      slope  
Received:  26 September 2008      Revised:  18 December 2008      Accepted manuscript online: 
PACS:  45.70.Vn (Granular models of complex systems; traffic flow)  
  02.60.Cb (Numerical simulation; solution of equations)  
Fund: Project supported partially by the Strategic Research Grants from City University of Hong Kong (Grant Nos SRG 7002226(BC) and SRG 7002370(BC)), and the National Natural Science Foundation of China (Grant Nos 10662002, 10672098 and 10532020).

Cite this article: 

He Hong-Di(何红弟), Lu Wei-Zhen(卢伟真), Xue Yu(薛郁), and Dong Li-Yun(董力耘) Dynamic characteristics and simulation of traffic flow with slope 2009 Chin. Phys. B 18 2703

[1] A novel lattice model integrating the cooperative deviation of density and optimal flux under V2X environment
Guang-Han Peng(彭光含), Chun-Li Luo(罗春莉), Hong-Zhuan Zhao(赵红专), and Hui-Li Tan(谭惠丽). Chin. Phys. B, 2023, 32(1): 018902.
[2] Traffic flow of connected and automated vehicles at lane drop on two-lane highway: An optimization-based control algorithm versus a heuristic rules-based algorithm
Huaqing Liu(刘华清), Rui Jiang(姜锐), Junfang Tian(田钧方), and Kaixuan Zhu(朱凯旋). Chin. Phys. B, 2023, 32(1): 014501.
[3] A novel car-following model by sharing cooperative information transmission delayed effect under V2X environment and its additional energy consumption
Guang-Han Peng(彭光含), Te-Ti Jia(贾特提), Hua Kuang(邝华), Hui-Li Tan(谭惠丽), and Tao Chen(陈陶). Chin. Phys. B, 2022, 31(5): 058901.
[4] Traffic flow prediction based on BILSTM model and data denoising scheme
Zhong-Yu Li(李中昱), Hong-Xia Ge(葛红霞), and Rong-Jun Cheng(程荣军). Chin. Phys. B, 2022, 31(4): 040502.
[5] Influence of various shapes of nanoparticles on unsteady stagnation-point flow of Cu-H2O nanofluid on a flat surface in a porous medium: A stability analysis
Astick Banerjee, Krishnendu Bhattacharyya, Sanat Kumar Mahato, and Ali J. Chamkha. Chin. Phys. B, 2022, 31(4): 044701.
[6] New multiplexed system for synchronous measurement of out-of-plane deformation and two orthogonal slopes
Yonghong Wang(王永红), Xiao Zhang(张肖), Qihan Zhao(赵琪涵), Yanfeng Yao(姚彦峰), Peizheng Yan(闫佩正), and Biao Wang(王标). Chin. Phys. B, 2022, 31(3): 034202.
[7] Modeling the heterogeneous traffic flow considering the effect of self-stabilizing and autonomous vehicles
Yuan Gong(公元) and Wen-Xing Zhu(朱文兴). Chin. Phys. B, 2022, 31(2): 024502.
[8] Stochastic optimal control for norovirus transmission dynamics by contaminated food and water
Anwarud Din and Yongjin Li(黎永锦). Chin. Phys. B, 2022, 31(2): 020202.
[9] Simulation of detection and scattering of sound waves by the lateral line of a fish
V M Adamyan, I Y Popov, I V Blinova, and V V Zavalniuk. Chin. Phys. B, 2022, 31(2): 024301.
[10] Theoretical study of novel B-C-O compoundswith non-diamond isoelectronic
Chao Liu(刘超) and Pan Ying(应盼). Chin. Phys. B, 2022, 31(2): 026201.
[11] An extended smart driver model considering electronic throttle angle changes with memory
Congzhi Wu(武聪智), Hongxia Ge(葛红霞), and Rongjun Cheng(程荣军). Chin. Phys. B, 2022, 31(1): 010504.
[12] Identification of unstable individuals in dynamic networks
Dongli Duan(段东立), Tao Chai(柴涛), Xixi Wu(武茜茜), Chengxing Wu(吴成星), Shubin Si(司书宾), and Genqing Bian(边根庆). Chin. Phys. B, 2021, 30(9): 090501.
[13] Modeling and analysis of car-following behavior considering backward-looking effect
Dongfang Ma(马东方), Yueyi Han(韩月一), Fengzhong Qu(瞿逢重), and Sheng Jin(金盛). Chin. Phys. B, 2021, 30(3): 034501.
[14] Breather solutions of modified Benjamin-Bona-Mahony equation
G T Adamashvili. Chin. Phys. B, 2021, 30(2): 020503.
[15] Optical solitons supported by finite waveguide lattices with diffusive nonlocal nonlinearity
Changming Huang(黄长明), Hanying Deng(邓寒英), Liangwei Dong(董亮伟), Ce Shang(尚策), Bo Zhao(赵波), Qiangbo Suo(索强波), and Xiaofang Zhou(周小芳). Chin. Phys. B, 2021, 30(12): 124204.
No Suggested Reading articles found!