Please wait a minute...
Chin. Phys. B, 2009, Vol. 18(10): 4187-4192    DOI: 10.1088/1674-1056/18/10/019
GENERAL Prev   Next  

Synchronization transition of limit-cycle system with homogeneous phase shifts

Zhang Ting-Xian(张廷宪)a)b) and Zheng Zhi-Gang(郑志刚)a)†
a Department of Physics and the Beijing-Hong Kong-Singapore Joint Center for Nonlinear and Complex Systems (Beijing), Beijing Normal University, Beijing 100875, China; b College of Physics and Electronic Engineering, Qujing Normal University, Qujing 655011, China
Abstract  The behaviors of coupled oscillators, each of which has periodic motion with random natural frequency in the absence of coupling, are investigated when phase shifts are considered. In the system of coupled oscillators, phase shifts are the same between different oscillators. Synchronization and synchronization transition are revealed with different phase shifts. Phase shifts play an important role for this kind of system. When the phase shift $\alpha<0.5\pi$, the synchronization state can be attained by increasing the coupling, and the system cannot reach the synchronization state while $\alpha\geqslant 0.5\pi$. A clear scaling between complete synchronization critical coupling strength $K_{pc}$ and $\alpha-0.5\pi$ is found.
Keywords:  nonlinear dynamics      coupled limit-cycle system      synchronization transition      phase shift  
Received:  31 December 2008      Revised:  05 March 2009      Accepted manuscript online: 
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
  05.40.Ca (Noise)  
Fund: Project supported in part by the National Natural Science Foundation of China (Grant No 10875011), the 973 Programme (Grant No 2007CB814805), and the Foundation of Doctoral Training of China (Grant No 20060027009).

Cite this article: 

Zhang Ting-Xian(张廷宪) and Zheng Zhi-Gang(郑志刚) Synchronization transition of limit-cycle system with homogeneous phase shifts 2009 Chin. Phys. B 18 4187

[1] Three-step self-calibrating generalized phase-shifting interferometry
Yu Zhang(张宇). Chin. Phys. B, 2022, 31(3): 030601.
[2] Experimental demonstration of a fast calibration method for integrated photonic circuits with cascaded phase shifters
Junqin Cao(曹君勤), Zhixin Chen(陈志歆), Yaxin Wang(王亚新), Tianfeng Feng(冯田峰), Zhihao Li(李志浩), Zeyu Xing(邢泽宇), Huashan Li(李华山), and Xiaoqi Zhou(周晓祺). Chin. Phys. B, 2022, 31(11): 114204.
[3] A low noise, high fidelity cross phase modulation in multi-level atomic medium
Liangwei Wang(王亮伟), Jia Guan(关佳), Chengjie Zhu(朱成杰), Runbing Li(李润兵), and Jing Shi(石兢). Chin. Phys. B, 2021, 30(11): 114204.
[4] Repulsive bubble-bubble interaction in ultrasonic field
Ling-Ling Zhang(张玲玲), Wei-Zhong Chen(陈伟中), Yao-Rong Wu(武耀蓉), Yang Shen(沈阳), and Guo-Ying Zhao(赵帼英). Chin. Phys. B, 2021, 30(10): 104301.
[5] Soliton molecules and dynamics of the smooth positon for the Gerdjikov–Ivanov equation
Xiangyu Yang(杨翔宇), Zhao Zhang(张钊), and Biao Li(李彪)†. Chin. Phys. B, 2020, 29(10): 100501.
[6] Generation of orbital angular momentum and focused beams with tri-layer medium metamaterial
Zhi-Chao Sun(孙志超), Meng-Yao Yan(闫梦瑶), and Bi-Jun Xu(徐弼军)†. Chin. Phys. B, 2020, 29(10): 104101.
[7] Single-shot phase-shifting digital holography with a photon-sieve-filtering telescope
You Li(李优), Yao-Cun Li(李垚村), Jun-Yong Zhang(张军勇), Yan-Li Zhang(张艳丽), Xue-Mei Li(李雪梅). Chin. Phys. B, 2019, 28(8): 084205.
[8] Simultaneous polarization separation and switching for 100-Gbps DP-QPSK signals in backbone networks
Yu-Long Su(苏玉龙), Huan Feng(冯欢), Hui Hu(胡辉), Wei Wang(汪伟), Tao Duan(段弢), Yi-Shan Wang(王屹山), Jin-Hai Si(司金海), Xiao-Ping Xie(谢小平), He-Ning Yang(杨合宁), Xin-Ning Huang(黄新宁). Chin. Phys. B, 2019, 28(2): 024216.
[9] Phase shift effects of radio-frequency bias on ion energy distribution in continuous wave and pulse modulated inductively coupled plasmas
Chan Xue(薛婵), Fei Gao(高飞), Yong-Xin Liu(刘永新), Jia Liu(刘佳), You-Nian Wang(王友年). Chin. Phys. B, 2018, 27(4): 045202.
[10] Nonlinear fast-slow dynamics of a coupled fractional order hydropower generation system
Xiang Gao(高翔), Diyi Chen(陈帝伊), Hao Zhang(张浩), Beibei Xu(许贝贝), Xiangyu Wang(王翔宇). Chin. Phys. B, 2018, 27(12): 128202.
[11] A new fully quantum-mechanical method used to calculate the collisional broadening coefficients and shift coefficients of Rb D1 lines perturbed by noble gases He and Ar
Wei Zhang(张伟), Yanchao Shi(史彦超), Bitao Hu(胡碧涛), Yi Zhang(张毅). Chin. Phys. B, 2018, 27(1): 013201.
[12] Performance analysis of quantum access network using code division multiple access model
Linxi Hu(胡林曦), Can Yang(杨灿), Guangqiang He(何广强). Chin. Phys. B, 2017, 26(6): 060304.
[13] Non-relativistic scattering amplitude for a new multi-parameter exponential-type potential
Yazarloo B H, Mehraban H, Hassanabadi H. Chin. Phys. B, 2016, 25(8): 080302.
[14] Prompt efficiency of energy harvesting by magnetic coupling of an improved bi-stable system
Hai-Tao Li(李海涛), Wei-Yang Qin(秦卫阳). Chin. Phys. B, 2016, 25(11): 110503.
[15] Self-calibration wavelength modulation spectroscopy for acetylene detection based on tunable diode laser absorption spectroscopy
Qin-Bin Huang(黄秦斌), Xue-Mei Xu(许雪梅), Chen-Jing Li(李晨静), Yi-Peng Ding(丁一鹏), Can Cao(曹粲), Lin-Zi Yin(尹林子), Jia-Feng Ding(丁家峰). Chin. Phys. B, 2016, 25(11): 114202.
No Suggested Reading articles found!