Please wait a minute...
Chin. Phys. B, 2008, Vol. 17(9): 3402-3406    DOI: 10.1088/1674-1056/17/9/042
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Study of a rectangular coupled cavity extendedinteraction oscillator in sub-terahertz waves

Zhang Kai-Chun(张开春), Wu Zhen-Hua(吴振华), and Liu Sheng-Gang(刘盛纲)
THz Research Center, Research Institute of High Energy Electronics, University of Electronic Science and Technology of China, Chengdu 610054, China
Abstract  An extended interaction oscillator (EIO) generating 120 GHz wave in sub-terahertz waves is studied by using the three-dimensional electromagnetic simulation software CST and PIC codes. A rectangular reentrant coupled-cavity is proposed as the slow-wave structure of EIO. By CST, the circuit parameters including frequency-phase dispersion, interaction impedance and characteristic impedance are simulated and calculated. The operation mode of EIO is chosen very close to the point where $\beta L=2\pi$ with corresponding frequency 120 GHz, the beam voltage 12 kV and the dimensions of the cavity with the period 0.5 mm, the height 3 mm and the width 1.4 mm. Simulation results of beam--wave interaction by PIC show that the exciting frequency is 120.85 GHz and output peak power 465 W with 12-period coupled-cavity with the perveance 0.17 $\mu$P. Simulation results indicate that the EIO has very wide range of the operation voltage.
Keywords:  extended interaction oscillator (EIO)      rectangular coupled-cavity      sub-terahertz (Sub-THz) waves      dispersion relation  
Received:  14 September 2007      Revised:  16 April 2008      Accepted manuscript online: 
PACS:  84.30.Ng (Oscillators, pulse generators, and function generators)  
  84.40.Dc (Microwave circuits)  
  84.40.Fe (Microwave tubes (e.g., klystrons, magnetrons, traveling-wave, backward-wave tubes, etc.))  
  84.40.Xb (Telemetry: remote control, remote sensing; radar)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No 10676110) and the National Basic Research Program of China (Grant No 2007CB310401).

Cite this article: 

Zhang Kai-Chun(张开春), Wu Zhen-Hua(吴振华), and Liu Sheng-Gang(刘盛纲) Study of a rectangular coupled cavity extendedinteraction oscillator in sub-terahertz waves 2008 Chin. Phys. B 17 3402

[1] Kinetic Alfvén waves in a deuterium-tritium fusion plasma with slowing-down distributed α-particles
Fei-Fei Lu(路飞飞) and San-Qiu Liu(刘三秋). Chin. Phys. B, 2022, 31(3): 035201.
[2] Phonon dispersion relations of crystalline solids based on LAMMPS package
Zhiyong Wei(魏志勇), Tianhang Qi(戚天航), Weiyu Chen(陈伟宇), and Yunfei Chen(陈云飞). Chin. Phys. B, 2021, 30(11): 114301.
[3] Graphene's photonic and optoelectronic properties-A review
A J Wirth-Lima, P P Alves-Sousa, W Bezerra-Fraga. Chin. Phys. B, 2020, 29(3): 037801.
[4] Surface plasmon polariton waveguides with subwavelength confinement
Longkun Yang(杨龙坤), Pan Li(李盼), Hancong Wang(汪涵聪), Zhipeng Li(李志鹏). Chin. Phys. B, 2018, 27(9): 094216.
[5] Resonant surface plasmons of a metal nanosphere treated as propagating surface plasmons
Yu-Rui Fang(方蔚瑞), Xiao-Rui Tian(田小锐). Chin. Phys. B, 2018, 27(6): 067302.
[6] Spoof surface plasmon-based bandpass filter with extremely wide upper stopband
Xiaoyong Liu(刘小勇), Lei Zhu(祝雷), Yijun Feng(冯一军). Chin. Phys. B, 2016, 25(3): 034101.
[7] A k·p analytical model for valence band of biaxial strained Ge on (001) Si1-xGex
Wang Guan-Yu(王冠宇), Zhang He-Ming(张鹤鸣), Gao Xiang(高翔), Wang Bin(王斌), and Zhou ChunYu(周春宇) . Chin. Phys. B, 2012, 21(5): 057103.
[8] Dispersion relation of dust acoustic waves in metallic multi-walled carbon nanotubes
Ali Fathalian and Shahram Nikjo . Chin. Phys. B, 2012, 21(5): 057306.
[9] Effect of multicomponent dust grains in a cold quantum dusty plasma
Yang Xiu-Feng(杨秀峰), Wang Shan-Jin(王善进), Chen Jian-Min(陈建敏), Shi Yu-Ren(石玉仁), Lin Mai-Mai(林麦麦), and Duan Wen-Shan(段文山) . Chin. Phys. B, 2012, 21(5): 055202.
[10] Dispersion relation of excitation mode in spin-polarized Fermi gas
Liu Ke(刘可) and Chen Ji-Sheng(陈继胜) . Chin. Phys. B, 2012, 21(3): 030309.
[11] Surface plasmon–polaritons on ultrathin metal films
Quan Jun(全军), Tian Ying(田英), Zhang Jun(张军), and Shao Le-Xi(邵乐喜) . Chin. Phys. B, 2011, 20(4): 047201.
[12] The surface plasmon polariton dispersion relations in a nonlinear-metal-nonlinear dielectric structure of arbitrary nonlinearity
Liu Bing-Can(刘炳灿), Yu Li(于丽), and Lu Zhi-Xin(逯志欣). Chin. Phys. B, 2011, 20(3): 037302.
[13] Effects of dust size distribution in ultracold quantum dusty plasmas
Qi Xue-Hong(祁学宏), Duan Wen-Shan(段文山), Chen Jian-Min(陈建敏), and Wang Shan-Jin(王善进) . Chin. Phys. B, 2011, 20(2): 025203.
[14] The dispersion relations for surface plasmon in a nonlinear–metal–nonlinear dielectric structure
Liu Bing-Can(刘炳灿), Yu Li(于丽), Lu Zhi-Xin(逯志欣), and Zhang Kai(张恺). Chin. Phys. B, 2010, 19(9): 097303.
[15] Wave growth rate in a cylindrical metal waveguide with ion-channel guiding of a relativistic electron beam
Li Hai-Rong(李海容), Tang Chang-Jian(唐昌建), and Wang Shun-Jin(王顺金). Chin. Phys. B, 2010, 19(12): 124101.
No Suggested Reading articles found!