Please wait a minute...
Chin. Phys. B, 2008, Vol. 17(5): 1623-1628    DOI: 10.1088/1674-1056/17/5/016
GENERAL Prev   Next  

Quantum phase transition and von Neumann entropy of quasiperiodic Hubbard chains

Zhu Xuan(朱璇) and Tong Pei-Qing(童培庆)
Department of Physics, Nanjing Normal University, Nanjing 210097, China
Abstract  The half-filled Hubbard chains with the Fibonacci and Harper modulating site potentials are studied in a self-consistent mean-field approximation. A new order parameter is introduced to describe a charge density order. We also calculate the von Neumann entropy of the ground state. The results show that the von Neumann entropy can identify a CDW/SDW (charge density wave/spin density wave) transition for quasiperiodic models.
Keywords:  von Neumann entropy      quasiperiodicity      Hubbard model      spin-density waves  
Received:  20 November 2007      Revised:  24 December 2007      Accepted manuscript online: 
PACS:  71.10.Fd (Lattice fermion models (Hubbard model, etc.))  
  71.45.Lr (Charge-density-wave systems)  
  75.10.Lp (Band and itinerant models)  
  75.30.Fv (Spin-density waves)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos 90203009, 10175035 and 10674072), the Specialized Research Fund for the Doctoral Programme (SRFDP) of Higher Education of China (Grant No 20060319007), and the Foundation for

Cite this article: 

Zhu Xuan(朱璇) and Tong Pei-Qing(童培庆) Quantum phase transition and von Neumann entropy of quasiperiodic Hubbard chains 2008 Chin. Phys. B 17 1623

[1] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[2] Relevance of 3d multiplet structure in nickelate and cuprate superconductors
Mi Jiang(蒋密). Chin. Phys. B, 2021, 30(10): 107103.
[3] Mott transition in ruby lattice Hubbard model
An Bao(保安). Chin. Phys. B, 2019, 28(5): 057101.
[4] Enhancing von Neumann entropy by chaos in spin-orbit entanglement
Chen-Rong Liu(刘郴荣), Pei Yu(喻佩), Xian-Zhang Chen(陈宪章), Hong-Ya Xu(徐洪亚), Liang Huang(黄亮), Ying-Cheng Lai(来颖诚). Chin. Phys. B, 2019, 28(10): 100501.
[5] Hubbard model on an anisotropic checkerboard lattice at finite temperatures: Magnetic and metal-insulator transitions
Hai-Di Liu(刘海迪). Chin. Phys. B, 2019, 28(10): 107102.
[6] Slater determinant and exact eigenstates of the two-dimensional Fermi-Hubbard model
Jun-Hang Ren(任军航), Ming-Yong Ye(叶明勇), Xiu-Min Lin(林秀敏). Chin. Phys. B, 2018, 27(7): 073102.
[7] Off-site trimer superfluid on a one-dimensional optical lattice
Er-Nv Fan(范二女), Tony C Scott, Wan-Zhou Zhang(张万舟). Chin. Phys. B, 2017, 26(4): 043701.
[8] Analytical and numerical investigations of displaced thermal state evolutions in a laser process
Chuan-Xun Du(杜传勋), Xiang-Guo Meng(孟祥国), Ran Zhang(张冉), Ji-Suo Wang(王继锁). Chin. Phys. B, 2017, 26(12): 120301.
[9] Doping-driven orbital-selective Mott transition in multi-band Hubbard models with crystal field splitting
Yilin Wang(王义林), Li Huang(黄理), Liang Du(杜亮), Xi Dai(戴希). Chin. Phys. B, 2016, 25(3): 037103.
[10] Phase diagram of the Fermi–Hubbard model with spin-dependent external potentials: A DMRG study
Wei Xing-Bo (魏兴波), Meng Ye-Ming (孟烨铭), Wu Zhe-Ming (吴哲明), Gao Xian-Long (高先龙). Chin. Phys. B, 2015, 24(11): 117101.
[11] Disappearance of the Dirac cone in silicene due to the presence of an electric field
D. A. Rowlands, Zhang Yu-Zhong (张宇钟). Chin. Phys. B, 2014, 23(3): 037101.
[12] Extended Bose–Hubbard model with pair hopping on triangular lattice
Wang Yan-Cheng (王艳成), Zhang Wan-Zhou (张万舟), Shao Hui (邵慧), Guo Wen-An (郭文安). Chin. Phys. B, 2013, 22(9): 096702.
[13] The dynamics of a symmetric coupling of three modified quadratic maps
Paulo C. Rech. Chin. Phys. B, 2013, 22(8): 080202.
[14] Effects of effective attractive multi-body interaction on quantum phase and transport dynamics of a strongly correlated bosonic gas across the superfluid to Mott insulator transition
Sun Jian-Fang (孙剑芳), Cui Guo-Dong (崔国栋), Jiang Bo-Nan (姜伯楠), Qian Jun (钱军), Wang Yu-Zhu (王育竹). Chin. Phys. B, 2013, 22(11): 110307.
[15] Alternative routes to equivalent classical models of a quantum system
M. Radonjić, Slobodan Prvanović, Nikola Burić. Chin. Phys. B, 2012, 21(12): 120301.
No Suggested Reading articles found!