Please wait a minute...
Chin. Phys. B, 2008, Vol. 17(1): 317-322    DOI: 10.1088/1674-1056/17/1/056
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Chemical composition and magnetism of Ag doped LaMnO3

Zhang Ning(张宁)a)b), Geng Tao(耿滔)c), Cao Hong-Xia(曹鸿霞)a)b), and Bao Jian-Chun(包建春)d)
a Magnetoeletronic Laboratory, Nanjing Normal University, Nanjing 210097, China; b Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, Chinac University of Shanghai for Science and Technology, Shanghai 200000, China; d Chemical Department, Nanjing Normal University, Nanjing 210097, China
Abstract  By using a sol-gel clue, a set of polycrystalline perovskite samples La$_{1 - x}$Ag$_{x}$MnO$_{3}$ with a nominal doping level $x$ ranging from 0.05 to 0.45 has been synthesized. The chemical composition and the magnetism of the samples were investigated. A little Ag was found seeping from the samples in the sintering process when the doping level exceeded 0.05 and the sintering temperature was higher than 700℃ resulting in the samples being in multiphase. The magnetic transition points of the samples have been found to decrease with increasing sintering temperature. A concentration-dependent $T_{\rm c}$ similar to that of bivalent metal ion doped perovskite, has been obtained. We believe that the Ag seeping in the sintering process is responsible for those magnetic characteristics.
Keywords:  granular system      composite      magnetism  
Accepted manuscript online: 
PACS:  81.20.Ev (Powder processing: powder metallurgy, compaction, sintering, mechanical alloying, and granulation)  
  75.30.Kz (Magnetic phase boundaries (including classical and quantum magnetic transitions, metamagnetism, etc.))  
  81.20.Fw (Sol-gel processing, precipitation)  
  61.72.up (Other materials)  
  75.47.De (Giant magnetoresistance)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos 10674071 and 20473038), the Foundation of High-Tech Project in Jiangsu Province, China (Grant No BG-2005041).

Cite this article: 

Zhang Ning(张宁), Geng Tao(耿滔), Cao Hong-Xia(曹鸿霞), and Bao Jian-Chun(包建春) Chemical composition and magnetism of Ag doped LaMnO3 2008 Chin. Phys. B 17 317

[1] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[2] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[3] Charge-mediated voltage modulation of magnetism in Hf0.5Zr0.5O2/Co multiferroic heterojunction
Jia Chen(陈佳), Peiyue Yu(于沛玥), Lei Zhao(赵磊), Yanru Li(李彦如), Meiyin Yang(杨美音), Jing Xu(许静), Jianfeng Gao(高建峰), Weibing Liu(刘卫兵), Junfeng Li(李俊峰), Wenwu Wang(王文武), Jin Kang(康劲), Weihai Bu(卜伟海), Kai Zheng(郑凯), Bingjun Yang(杨秉君), Lei Yue(岳磊), Chao Zuo(左超), Yan Cui(崔岩), and Jun Luo(罗军). Chin. Phys. B, 2023, 32(2): 027504.
[4] Gamma induced changes in Makrofol/CdSe nanocomposite films
Ali A. Alhazime, M. ME. Barakat, Radiyah A. Bahareth, E. M. Mahrous,Saad Aldawood, S. Abd El Aal, and S. A. Nouh. Chin. Phys. B, 2022, 31(9): 097802.
[5] Magnetic van der Waals materials: Synthesis, structure, magnetism, and their potential applications
Zhongchong Lin(林中冲), Yuxuan Peng(彭宇轩), Baochun Wu(吴葆春), Changsheng Wang(王常生), Zhaochu Luo(罗昭初), and Jinbo Yang(杨金波). Chin. Phys. B, 2022, 31(8): 087506.
[6] Magnetic properties of oxides and silicon single crystals
Zhong-Xue Huang(黄忠学), Rui Wang(王瑞), Xin Yang(杨鑫), Hao-Feng Chen(陈浩锋), and Li-Xin Cao(曹立新). Chin. Phys. B, 2022, 31(8): 087501.
[7] High-pressure study of topological semimetals XCd2Sb2 (X = Eu and Yb)
Chuchu Zhu(朱楚楚), Hao Su(苏豪), Erjian Cheng(程二建), Lin Guo(郭琳), Binglin Pan(泮炳霖), Yeyu Huang(黄烨煜), Jiamin Ni(倪佳敏), Yanfeng Guo(郭艳峰), Xiaofan Yang(杨小帆), and Shiyan Li(李世燕). Chin. Phys. B, 2022, 31(7): 076201.
[8] Impact of composition ratio on the structure and optical properties of (1-x)MnFe2O4/(x)ZnMn2O4 nanocomposite
Zein K. Heiba, Mohamed Bakr Mohamed, Ali A. Alkathiri, Sameh I. Ahmed, A A Alhazime. Chin. Phys. B, 2022, 31(7): 077102.
[9] Voltage control magnetism and ferromagnetic resonance in an Fe19Ni81/PMN-PT heterostructure by strain
Jun Ren(任军), Junming Li(李军明), Sheng Zhang(张胜), Jun Li(李骏), Wenxia Su(苏文霞), Dunhui Wang(王敦辉), Qingqi Cao(曹庆琪), and Youwei Du(都有为). Chin. Phys. B, 2022, 31(7): 077502.
[10] Parity-time symmetric acoustic system constructed by piezoelectric composite plates with active external circuits
Yang Zhou(周扬), Zhang-Zhao Yang(杨彰昭), Yao-Yin Peng(彭尧吟), and Xin-Ye Zou(邹欣晔). Chin. Phys. B, 2022, 31(6): 064304.
[11] Exploration of structural, optical, and photoluminescent properties of (1-x)NiCo2O4/xPbS nanocomposites for optoelectronic applications
Zein K Heiba, Mohamed Bakr Mohamed, Noura M Farag, and Ali Badawi. Chin. Phys. B, 2022, 31(6): 067801.
[12] Analysis on vibration characteristics of large-size rectangular piezoelectric composite plate based on quasi-periodic phononic crystal structure
Li-Qing Hu(胡理情), Sha Wang(王莎), and Shu-Yu Lin(林书玉). Chin. Phys. B, 2022, 31(5): 054302.
[13] Dynamical signatures of the one-dimensional deconfined quantum critical point
Ning Xi(西宁) and Rong Yu(俞榕). Chin. Phys. B, 2022, 31(5): 057501.
[14] Diffusion of a chemically active colloidal particle in composite channels
Xin Lou(娄辛), Rui Liu(刘锐), Ke Chen(陈科), Xin Zhou(周昕), Rudolf Podgornik, and Mingcheng Yang(杨明成). Chin. Phys. B, 2022, 31(4): 044704.
[15] Enhancing the thermoelectric performance through the mutual interaction between conjugated polyelectrolytes and single-walled carbon nanotubes
Shuxun Wan(万树勋), Zhongming Chen(陈忠明), Liping Hao(郝丽苹), Shichao Wang(王世超), Benzhang Li(李本章), Xiao Li(黎潇), Chengjun Pan(潘成军), and Lei Wang(王雷). Chin. Phys. B, 2022, 31(2): 028104.
No Suggested Reading articles found!