Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(1): 018509    DOI: 10.1088/1674-1056/ac9b35
Special Issue: SPECIAL TOPIC — Physics in micro-LED and quantum dots devices
SPECIAL TOPIC—Physics in micro-LED and quantum dots devices Prev   Next  

A polarization mismatched p-GaN/p-Al0.25Ga0.75N/p-GaN structure to improve the hole injection for GaN based micro-LED with secondary etched mesa

Yidan Zhang(张一丹)1,2, Chunshuang Chu(楚春双)1,3,†, Sheng Hang(杭升)1,2, Yonghui Zhang(张勇辉)1,2, Quan Zheng(郑权)4, Qing Li(李青)4, Wengang Bi(毕文刚)2, and Zihui Zhang(张紫辉)1,2,‡
1 State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300401, China;
2 School of Electronics and Information Engineering, Hebei University of Technology, Key Laboratory of Electronic Materials and Devices of Tianjin, Tianjin 300401, China;
3 School of Electrical Engineering, Hebei University of Technology, Tianjin 300401, China.;
4 State Key Engineering Center of Flat-Panel-Display Glass and Equipment, Shijiazhuang 050035, China
Abstract  A low hole injection efficiency for InGaN/GaN micro-light-emitting diodes (μLEDs) has become one of the main bottlenecks affecting the improvement of the external quantum efficiency (EQE) and the optical power. In this work, we propose and fabricate a polarization mismatched p-GaN/p-Al$_{0.25}$Ga$_{0.75}$N/p-GaN structure for 445 nm GaN-based μLEDs with the size of $40 \times 40 $μm$^{2}$, which serves as the hole injection layer. The polarization-induced electric field in the p-GaN/p-Al$_{0.25}$Ga$_{0.75}$N/p-GaN structure provides holes with more energy and can facilitate the non-equilibrium holes to transport into the active region for radiative recombination. Meanwhile, a secondary etched mesa for μLEDs is also designed, which can effectively keep the holes apart from the defected region of the mesa sidewalls, and the surface nonradiative recombination can be suppressed. Therefore, the proposed μLED with the secondary etched mesa and the p-GaN/p-Al$_{0.25}$Ga$_{0.75}$N/p-GaN structure has the enhanced EQE and the improved optical power density when compared with the μLED without such designs.
Keywords:  μLED      polarization mismatch      secondary etched mesa      hole injection  
Received:  28 July 2022      Revised:  20 September 2022      Accepted manuscript online:  19 October 2022
PACS:  85.30.De (Semiconductor-device characterization, design, and modeling)  
  85.35.Be (Quantum well devices (quantum dots, quantum wires, etc.))  
  85.60.Bt (Optoelectronic device characterization, design, and modeling)  
  85.60.Jb (Light-emitting devices)  
Fund: This work was supported in part by the National Natural Science Foundation of China (Grant Nos. 62074050 and 61975051); Research Fund by State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology (Grant Nos. EERI PI2020008 and EERIPD2021012); and Joint Research Project for Tunghsu Group and Hebei University of Technology (Grant No. HI1909).
Corresponding Authors:  Chunshuang Chu, Zihui Zhang     E-mail:  cs.chu@hebut.edu.cn;zh.zhang@hebut.edu.cn

Cite this article: 

Yidan Zhang(张一丹), Chunshuang Chu(楚春双), Sheng Hang(杭升), Yonghui Zhang(张勇辉),Quan Zheng(郑权), Qing Li(李青), Wengang Bi(毕文刚), and Zihui Zhang(张紫辉) A polarization mismatched p-GaN/p-Al0.25Ga0.75N/p-GaN structure to improve the hole injection for GaN based micro-LED with secondary etched mesa 2023 Chin. Phys. B 32 018509

[1] Huang Y, Hsiang E L, Deng M Y and Wu S T 2020 Light Sci. Appl. 9 105
[2] Zhang K, Liu Y, Kwok H and Liu Z 2020 Nanomate 10 689
[3] Wu T, Sher C W, Lin Y, Lee C F, Liang S, Lu Y, Huang Chen S W, Guo W, Kuo H C and Chen Z 2018 Appl. Sci. 8 1557
[4] Tian M, Yu H, Memon M H, Xing Z, Huang C, Jia H, Zhang H, Wang D, Fang S and Sun H 2021Opt. Lett. 46 4809
[5] Yu H, Memon M H, Jia H, Zhang H, Tian M, Fang S, Wang D, Kang Y, Xiao S, Long S and Sun H 2022 J. Semicond. 43 062801
[6] Hang S, Chuang C M, Zhang Y, Chu C, Tian K, Zheng Q, Wu T, Liu Z, Zhang Z H, Li Q and Kuo H C 2021 Phys. D: Appl. Phys. 54 153002
[7] Zhou X, Tian P, Sher C W, Wu J, Liu H, Liu R and Kuo H C2020 Progress in Quantum Electronics 71 100263
[8] Yu H, Memon M H, Wang D, Ren Z, Zhang H, Huang C, Tian M, Sun H and Long S 2021 Opt. Lett. 46 3271
[9] Smith J M, Ley R, Wong M S, Baek Y H, Kang J H, Kim C H, Gordon M J, Nakamura S, Speck J S and DenBaars S P 2020 Appl. Phys. Lett. 116 071102
[10] Kou J, Shen C C, Shao H, Che J, Hou X, Chu C, Tian K, Zhang Y, Zhang Z H and Kuo H C 2019 Opt. Express 27 A643
[11] Yu J, Tao T, Liu B, Xu F, Zheng Y, Wang X, Sang Y, Yan Y, Xie Z, Liang S, Chen D, Chen P, Xiu X, Zheng Y and Zhang R 2021 Crystals 11 403
[12] Tian P, McKendry J J D, Gong Z, Guilhabert B, Watson I M, Gu E, Chen Z, Zhang G and Dawson M D 2012 Appl. Phys. Lett. 101 231110
[13] Ley R T, Smith J M, Wong M S, Margalith T, Nakamura S, DenBaars S P and Gordon M J 2020 Appl. Phys. Lett. 116 251104
[14] Wong M S, Hwang D, Alhassan A I, Lee C, Ley R, Nakamura S and DenBaars S P 2018 Opt. Express 26 21324
[15] Chen W, Hu G, Lin J, Jiang J, Liu M, Yang Y, Hu G, Lin Y, Wu Z, Liu Y and Zhang B 2015 Appl. Phys. Express 8 032102
[16] Hang S, Zhang M, Zhang Y, Chu C, Zhang Y, Zheng Q, Li Q and Zhang Z H 2021 Opt. Express 29 31201
[17] Zhang M, Hang S, Chu C, Shao H, Zhang Y, Zhang Y, Zhang Y, Zheng Q, Li Q and Zhang Z H 2022 IEEE Trans. Electron Devices 69 3213
[18] Koide Y, Maeda T, Kawakami T, Fujita S, Uemura T, Shibata N and Murakami M 1999 J. Electron. Mater. 28 341
[19] Zhang Z H, Tiam Tan S, Kyaw Z, Ji Y, Liu W, Ju Z, Hasanov N, Wei Sun X and Volkan Demir H 2013 Appl. Phys. Lett. 102 193508
[20] Meneghini M, Trivellin N, Meneghesso G, Zanoni E, Zehnder U and Hahn B 2009 Appl. Phys. 106 114508
[21] Kirill A Bulashevich, Sergey S Konopllev and Sergey Y Karpov 2018 Photonics 5 41
[22] Rigutti L, Castaldini A and Cavallini A 2008 Phys. Rev. 77 045312
[23] Narita T, Tokuda Y and Kogiso T 2018 Appl. Phys. 123 161405
[24] Vurgaftman I and Meyer J R 2003 Appl. Phys. 94 3675
[25] Ni X, Fan Q, Shimada R, Özgür Ü and Morkoç H 2008 Appl. Phys. Lett. 93 171113
[1] Lowering the driving voltage and improving the luminance of blue fluorescent organic light-emitting devices by thermal annealing a hole injection layer of pentacene
Jian Gao(高建), Qian-Qian Yu(于倩倩), Juan Zhang(张娟), Yang Liu(刘洋), Ruo-Fei Jia(贾若飞), Jun Han(韩俊), Xiao-Ming Wu(吴晓明), Yu-Lin Hua(华玉林), Shou-Gen Yin(印寿根). Chin. Phys. B, 2017, 26(9): 098507.
[2] Efficiency droop suppression in GaN-based light-emitting diodes by chirped multiple quantum well structure at high current injection
Zhao Yu-Kun (赵宇坤), Li Yu-Feng (李虞锋), Huang Ya-Ping (黄亚平), Wang Hong (王宏), Su Xi-Lin (苏喜林), Ding Wen (丁文), Yun Feng (云峰). Chin. Phys. B, 2015, 24(5): 056806.
[3] Enhanced performance of GaN-based light-emitting diodes with InGaN/GaN superlattice barriers
Cai Jin-Xin (蔡金鑫), Sun Hui-Qing (孙慧卿), Zheng Huan (郑欢), Zhang Pan-Jun (张盼君), Guo Zhi-You (郭志友). Chin. Phys. B, 2014, 23(5): 058502.
[4] Increased work function in PEDOT:PSS film under ultraviolet irradiation
Xing Ying-Jie (邢英杰), Qian Min-Fang (钱旻昉), Guo Deng-Zhu (郭等柱), Zhang Geng-Min (张耿民). Chin. Phys. B, 2014, 23(3): 038504.
[5] Performance improvement of GaN-based light-emitting diode with a p-InAlGaN hole injection layer
Yu Xiao-Peng (喻晓鹏), Fan Guang-Han (范广涵), Ding Bin-Bin (丁彬彬), Xiong Jian-Yong (熊建勇), Xiao Yao (肖瑶), Zhang Tao (张涛), Zheng Shu-Wen (郑树文). Chin. Phys. B, 2014, 23(2): 028502.
[6] Simulation study of blue InGaN multiple quantum well light-emitting diodes with different hole injection layers
Wu Le-Juan(仵乐娟), Li Shu-Ti(李述体), Liu Chao(刘超), Wang Hai-Long(王海龙), Lu Tai-Ping(卢太平), Zhang Kang(张康), Xiao Guo-Wei(肖国伟), Zhou Yu-Gang(周玉刚), Zheng Shu-Wen(郑树文), Yin Yi-An(尹以安), and Yang Xiao-Dong(杨孝东) . Chin. Phys. B, 2012, 21(6): 068506.
[7] The performance enhancement in organic light-emitting diode using a semicrystalline composite for hole injection
Cao Jun-Song(曹峻松), Guan Min(关敏), Cao Guo-Hua(曹国华), Zeng Yi-Ping(曾一平), Li Jin-Min(李晋闽), and Qin Da-Shan(秦大山) . Chin. Phys. B, 2008, 17(7): 2725-2729.
[8] The first-principles study of ferroelectric behaviours of PbTiO3/SrTiO3 and BaTiO3/SrTiO3 superlattices
Zhu Zhen-Ye(朱振业), Wang Biao(王彪), Wang Hai(王海), Zheng Yue(郑跃), and Li Qing-Kun(李青坤). Chin. Phys. B, 2007, 16(6): 1780-1785.
[9] Comparison of hot-hole injections in ultrashort channel LDD nMOSFETs with ultrathin oxide under an alternating stress
Chen Hai-Feng(陈海峰), Hao Yue(郝跃), Ma Xiao-Hua(马晓华), Cao Yan-Rong(曹艳荣), Gao Zhi-Yuan(高志远), and Gong Xin(龚欣). Chin. Phys. B, 2007, 16(10): 3114-3119.
No Suggested Reading articles found!