Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(1): 018502    DOI: 10.1088/1674-1056/ac8f38
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

High throughput N-modular redundancy for error correction design of memristive stateful logic

Xi Zhu(朱熙), Hui Xu(徐晖), Weiping Yang(杨为平), Zhiwei Li(李智炜), Haijun Liu(刘海军), Sen Liu(刘森), Yinan Wang(王义楠), and Hongchang Long(龙泓昌)
College of Electronic Science and Technology, National University of Defense Technology, Changsha 410073, China
Abstract  Memristive stateful logic is one of the most promising candidates to implement an in-memory computing system that computes within the storage unit. It can eliminate the costs for the data movement in the traditional von Neumann system. However, the instability in the memristors is inevitable due to the limitation of the current fabrication technology, which incurs a great challenge for the reliability of the memristive stateful logic. In this paper, the implication of device instability on the reliability of the logic event is simulated. The mathematical relationship between logic reliability and redundancy has been deduced. By combining the mathematical relationship with the vector-matrix multiplication in a memristive crossbar array, the logic error correction scheme with high throughput has been proposed. Moreover, a universal design paradigm has been put forward for complex logic. And the circuit schematic and the flow of the scheme have been raised. Finally, a 1-bit full adder (FA) based on the NOR logic and NOT logic is simulated and the mathematical evaluation is performed. It demonstrates the scheme can improve the reliability of the logic significantly. And compared with other four error corrections, the scheme which can be suitable for all kinds of R-R logics and V-R logics has the best universality and throughput. Compared with the other two approaches which also need additional complementary metal-oxide semiconductor (CMOS) circuits, it needs fewer transistors and cycles for the error correction.
Keywords:  memristor      stateful logic      logic reliability      in-memory computing  
Received:  25 May 2022      Revised:  29 August 2022      Accepted manuscript online:  05 September 2022
PACS:  85.35.-p (Nanoelectronic devices)  
  85.25.Hv (Superconducting logic elements and memory devices; microelectronic circuits)  
  87.85.Qr (Nanotechnologies-design)  
  84.32.-y (Passive circuit components)  
Fund: Project supported by the National Key Research and Development Plan of the Ministry of Science of Technology of China (Grand Nos. 2019YFB 2205100 and 2019YFB 2205102), the National Natural Science Foundation of China (Grant Nos. 61974164, 62074166, 61804181, 62004219, and 62004220), and the Science Support Program of the National University of Defense and Technology (Grand No. ZK20-06).
Corresponding Authors:  Zhiwei Li, Haijun Liu     E-mail:  lizhiwei@nudt.edu.cn;liuhaijun@nudt.edu.cn

Cite this article: 

Xi Zhu(朱熙), Hui Xu(徐晖), Weiping Yang(杨为平), Zhiwei Li(李智炜), Haijun Liu(刘海军), Sen Liu(刘森), Yinan Wang(王义楠), and Hongchang Long(龙泓昌) High throughput N-modular redundancy for error correction design of memristive stateful logic 2023 Chin. Phys. B 32 018502

[1] Wang Z, Wu H, Burr G W, Hwang C S, Wang K L, Xia Q and Yang J J 2020 Nat. Rev. Mater. 5 173
[2] Mutlu O, Ghose S, Gómez-Luna J and Ausavarungnirun R 2019 Microprocess. Microsyst. 67 28
[3] Borghetti J, Snider G S, Kuekes P J, Yang J J, Stewart D R and Williams R S 2010 Nature 464 873
[4] Kvatinsky S, Member S, Belousov D, Liman S, Satat G, Member S, Wald N, Friedman E G, Kolodny A, Member S and Weiser U C 2014 IEEE Trans. Circuits Syst. II Express Briefs 61 895
[5] Sun Z, Ambrosi E, Bricalli A and Ielmini D 2018 Adv. Mater. 30 2
[6] Hu X, Schultis M J, Kramer M, Bagla A, Shetty A and Friedman J S 2019 IEEE Trans. Circuits Syst. I Regul. Pap. 66 263
[7] Li Y, Zhou Y X, Xu L, Lu K, Wang Z R, Duan N, Jiang L, Cheng L, Chang T C, Chang K C, Sun H J, Xue K H and Miao X S 2016 ACS Appl. Mater. Interfaces 8 34559
[8] Huang P, Kang J, Zhao Y, Chen S, Han R, Zhou Z, Chen Z, Ma W, Li M, Liu L and Liu X 2016 Adv. Mater. 28 9758
[9] Yang B, Xu N, Zhou E, Li Z, Li C, Yi P and Fang L 2020 Chin. Phys. B 29 48505
[10] Li Z, Chen P Y, Xu H and Yu S 2017 IEEE Trans. Electron Dev. 64 2721
[11] Xu N, Yoon K J, Kim K M, Fang L and Hwang C S 2018 Adv. Electron. Mater. 4 1
[12] Jiang W, Li J, Liu H, Qian X, Ge Y, Wang L and Duan S 2022 Chin. Phys. B 31 040702
[13] Chen B, Cai F, Zhou J, Ma W, Sheridan P and Lu W D 2015 Tech. Dig. - Int. Electron Devices Meet. IEDM 2016-February 17.5.1-17.5.4
[14] Ielmini D and Wong H S P 2018 Nat. Electron. 1 333
[15] Liu S, Lu N, Zhao X, Xu H, Banerjee W, Lv H, Long S, Li Q, Liu Q and Liu M 2016 Adv. Mater. 28 10623
[16] Koroleva A A, Chernikova A G, Chouprik A A, Gornev E S, Slavich A S, Khakimov R R, Korostylev E V., Hwang C S and Markeev A M 2020 ACS Appl. Mater. Interfaces 12 55331
[17] Jang J, Gi S, Yeo I, Choi S, Jang S, Ham S, Lee B and Wang G 2022 Adv. Sci. 9 2201117
[18] Xu J, Zhan Y, Li Y, Wu J, Ji X, Yu G, Jiang W, Zhao R and Wang C 2021 IEEE Trans. Circuits Syst. I Regul. Pap. 69 309
[19] Li Z, Long H, Zhu X, Wang Y, Liu H, Li Q, Xu N and Xu H 2022 Adv. Intell. Syst. 4 2100234
[20] Zhu X, Li Z, Long H, Liu H, Wang Y and Xu H 2020 IEEE International Symposium on Circuits and Systems (ISCAS) (Sevilla) pp. 1-5
[21] Zhu X, Long H, Li Z, Diao J, Liu H, Li N and Xu H 2020 Microelectronics J. 103 104866
[22] In J H, Kim Y S, Song H, Kim G M, An J, Jeon J B and Kim K M 2020 Adv. Intell. Syst. 2 2000081
[23] Ben-Hur R, Ronen R, Haj-Ali A, Bhattacharjee D, Eliahu A, Peled N and Kvatinsky S 2019 IEEE Trans. Comput. Des. Integr. Circuits Syst. 39 2434
[24] Zhu X, Xu H, Long H, Li Q, Li Z, Liu H and Wang Y 2021 IEEE Electron Devices Technology and Manufacturing Conference (EDTM) (China) pp. 1-3
[25] Kim S, Zhou J and Lu W D 2014 IEEE Trans. Electron Dev. 61 2820
[26] Zhu X, Li Z, Liu H, Li Q, Liu S, Li N and Xu H 2020 IET Circuits, Dev. Syst. 14 498
[27] Kvatinsky S, Friedman E G, Kolodny A and Weiser U C 2013 IEEE Trans. Circuits Syst. I Regul. Paper 60 211
[1] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[2] Memristor's characteristics: From non-ideal to ideal
Fan Sun(孙帆), Jing Su(粟静), Jie Li(李杰), Shukai Duan(段书凯), and Xiaofang Hu(胡小方). Chin. Phys. B, 2023, 32(2): 028401.
[3] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[4] High-performance artificial neurons based on Ag/MXene/GST/Pt threshold switching memristors
Xiao-Juan Lian(连晓娟), Jin-Ke Fu(付金科), Zhi-Xuan Gao(高志瑄),Shi-Pu Gu(顾世浦), and Lei Wang(王磊). Chin. Phys. B, 2023, 32(1): 017304.
[5] Firing activities in a fractional-order Hindmarsh-Rose neuron with multistable memristor as autapse
Zhi-Jun Li(李志军), Wen-Qiang Xie(谢文强), Jin-Fang Zeng(曾金芳), and Yi-Cheng Zeng(曾以成). Chin. Phys. B, 2023, 32(1): 010503.
[6] Fabrication and investigation of ferroelectric memristors with various synaptic plasticities
Qi Qin(秦琦), Miaocheng Zhang(张缪城), Suhao Yao(姚苏昊), Xingyu Chen(陈星宇), Aoze Han(韩翱泽),Ziyang Chen(陈子洋), Chenxi Ma(马晨曦), Min Wang(王敏), Xintong Chen(陈昕彤), Yu Wang(王宇),Qiangqiang Zhang(张强强), Xiaoyan Liu(刘晓燕), Ertao Hu(胡二涛), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(7): 078502.
[7] Design and FPGA implementation of a memristor-based multi-scroll hyperchaotic system
Sheng-Hao Jia(贾生浩), Yu-Xia Li(李玉霞), Qing-Yu Shi(石擎宇), and Xia Huang(黄霞). Chin. Phys. B, 2022, 31(7): 070505.
[8] Pulse coding off-chip learning algorithm for memristive artificial neural network
Ming-Jian Guo(郭明健), Shu-Kai Duan(段书凯), and Li-Dan Wang(王丽丹). Chin. Phys. B, 2022, 31(7): 078702.
[9] The dynamics of a memristor-based Rulkov neuron with fractional-order difference
Yan-Mei Lu(卢艳梅), Chun-Hua Wang(王春华), Quan-Li Deng(邓全利), and Cong Xu(徐聪). Chin. Phys. B, 2022, 31(6): 060502.
[10] A mathematical analysis: From memristor to fracmemristor
Wu-Yang Zhu(朱伍洋), Yi-Fei Pu(蒲亦非), Bo Liu(刘博), Bo Yu(余波), and Ji-Liu Zhou(周激流). Chin. Phys. B, 2022, 31(6): 060204.
[11] Memristor-based multi-synaptic spiking neuron circuit for spiking neural network
Wenwu Jiang(蒋文武), Jie Li(李杰), Hongbo Liu(刘洪波), Xicong Qian(钱曦聪), Yuan Ge(葛源), Lidan Wang(王丽丹), and Shukai Duan(段书凯). Chin. Phys. B, 2022, 31(4): 040702.
[12] Complex dynamic behaviors in hyperbolic-type memristor-based cellular neural network
Ai-Xue Qi(齐爱学), Bin-Da Zhu(朱斌达), and Guang-Yi Wang(王光义). Chin. Phys. B, 2022, 31(2): 020502.
[13] A novel hyperchaotic map with sine chaotification and discrete memristor
Qiankun Sun(孙乾坤), Shaobo He(贺少波), Kehui Sun(孙克辉), and Huihai Wang(王会海). Chin. Phys. B, 2022, 31(12): 120501.
[14] A spintronic memristive circuit on the optimized RBF-MLP neural network
Yuan Ge(葛源), Jie Li(李杰), Wenwu Jiang(蒋文武), Lidan Wang(王丽丹), and Shukai Duan(段书凯). Chin. Phys. B, 2022, 31(11): 110702.
[15] Artificial synaptic behavior of the SBT-memristor
Gang Dou(窦刚), Ming-Long Dou(窦明龙), Ren-Yuan Liu(刘任远), and Mei Guo(郭梅). Chin. Phys. B, 2021, 30(7): 078401.
No Suggested Reading articles found!