Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(11): 117105    DOI: 10.1088/1674-1056/ac81a6
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

A novel Si-rich SiN bilayer passivation with thin-barrier AlGaN/GaN HEMTs for high performance millimeter-wave applications

Zhihong Chen(陈治宏)1, Minhan Mi(宓珉瀚)1,3,†, Jielong Liu(刘捷龙)2, Pengfei Wang(王鹏飞)1, Yuwei Zhou(周雨威)2, Meng Zhang(张濛)1, Xiaohua Ma(马晓华)1, and Yue Hao(郝跃)1
1 Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071, China;
2 School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710071, China;
3 Guangzhou Institute of Technology, Xidian University, Guangzhou 510555, China
Abstract  We demonstrate a novel Si-rich SiN bilayer passivation technology for AlGaN/GaN high electron mobility transistors (HEMTs) with thin-barrier to minimize surface leakage current to enhance the breakdown voltage. The bilayer SiN with 20-nm Si-rich SiN and 100-nm Si$_{3}$N$_{4}$ was deposited by plasma-enhanced chemical vapor deposition (PECVD) after removing 20-nm SiO$_{2}$ pre-deposition layer. Compared to traditional Si$_{3}$N$_{4}$ passivation for thin-barrier AlGaN/GaN HEMTs, Si-rich SiN bilayer passivation can suppress the current collapse ratio from 18.54% to 8.40%. However, Si-rich bilayer passivation leads to a severer surface leakage current, so that it has a low breakdown voltage. The 20-nm SiO$_{2}$ pre-deposition layer can protect the surface of HEMTs in fabrication process and decrease Ga-O bonds, resulting in a lower surface leakage current. In contrast to passivating Si-rich SiN directly, devices with the novel Si-rich SiN bilayer passivation increase the breakdown voltage from 29 V to 85 V. Radio frequency (RF) small-signal characteristics show that HEMTs with the novel bilayer SiN passivation leads to $f_{\rm T}/f_{\rm max}$ of 68 GHz/102 GHz. At 30 GHz and $V_{\rm DS} = 20$ V, devices achieve a maximum $P_{\rm out}$ of 5.2 W/mm and a peak power-added efficiency (PAE) of 42.2%. These results indicate that HEMTs with the novel bilayer SiN passivation can have potential applications in the millimeter-wave range.
Keywords:  AlGaN/GaN HEMTs      thin-barrier      Si-rich SiN passivation      current collapse      surface leakage current      millimeter-wave  
Received:  31 May 2022      Revised:  11 July 2022      Accepted manuscript online:  18 July 2022
PACS:  71.55.Eq (III-V semiconductors)  
  73.20.-r (Electron states at surfaces and interfaces)  
  73.50.-h (Electronic transport phenomena in thin films)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2020YFB1804902), the National Natural Science Foundation of China (Grant Nos. 61904135, 62090014, and 11690042), the Fundamental Research Funds for the Central Universities, the Innovation Fund of Xidian University (Grant No. YJS2213), the China Postdoctoral Science Foundation (Grant Nos. 2018M640957 and BX20200262), the Key Research and Development Program of Guangzhou (Grant No. 202103020002), Wuhu and Xidian University Special Fund for Industry–UniversityResearch Cooperation (Grant No. XWYCXY-012021014-HT), and the Fundamental Research Funds for the Central Universities, China (Grant No. XJS221110).
Corresponding Authors:  Minhan Mi     E-mail:  miminhan@qq.com

Cite this article: 

Zhihong Chen(陈治宏), Minhan Mi(宓珉瀚), Jielong Liu(刘捷龙), Pengfei Wang(王鹏飞), Yuwei Zhou(周雨威), Meng Zhang(张濛), Xiaohua Ma(马晓华), and Yue Hao(郝跃) A novel Si-rich SiN bilayer passivation with thin-barrier AlGaN/GaN HEMTs for high performance millimeter-wave applications 2022 Chin. Phys. B 31 117105

[1] Chung J W, Hoke W E, Chumbes E M and Palacios T 2010 IEEE Electron Dev. Lett. 31 195
[2] Lee D S, Liu Z H and Palacios T 2014 Jpn. J. Appl. Phys. 53 100212
[3] Cakmak H, Ozturk M, Ozbay E and Imer B 2021 IEEE Trans. Electron Dev. 68 1006
[4] Zhang Y C, Huang S, Wei K, Zhang S, Wang X H, Zheng Y K, Liu G G, Chen X J, Li Y K and Liu X Y 2020 IEEE Electron Dev. Lett. 41 701
[5] Khan M A, Chen Q, Sun C J, Yang J W, Blasingame M, Shur M S and Park H 1996 Appl. Phys. Lett. 68 514
[6] Kohn E, Daumiller I, Schmid P, Nguyen N X and Nguyen C N 1999 Electron. Lett. 35 1022
[7] Eastman L F 1999 Physica Status Solidi A 176 175
[8] Huang T D, Bergsten J, Thorsell M and Rorsman N 2018 IEEE Trans. Electron Dev. 65 908
[9] Huang T D, Axelsson O, Bergsten J, Thorsell M and Rorsman N 2020 IEEE Trans. Electron Dev. 67 2297
[10] Vetury, Ramakrishna, Zhang and Naiqain Q 2001 IEEE Trans. Electron Dev. 48 560
[11] Green B M, Chu K K, Chumbes E M, Smart J A, Shealy J R and Eastman L F 2000 IEEE Electron Dev. Lett. 21 268
[12] Klein P B, Binari S C, Ikossi-Anastasiou K, Wickenden A E, Koleske D D, Henry R L and Katzer D S 2001 Electron. Lett. 37 661
[13] Tilak V, Green B, Kaper V, Kim H, Prunty T, Smart J, Shealy J and Eastman L 2002 IEEE Electron Dev. Lett. 22 504
[14] Wang X H, Huang S, Zheng Y K, Wei K, Chen X J, Liu G G, Yuan T T, Luo W J, Pang L, Jiang H J, Li J F, Zhao C, Zhang H X and Liu X Y 2015 IEEE Electron Dev. Lett. 36 666
[15] Hasan M T, Asano T, Tokuda H and Kuzuhara M 2013 IEEE Electron Dev. Lett. 34 1379
[16] Long R D, Hazeghi A, Gunji M, Nishi Y and McIntyre P C 2012 Appl. Phys. Lett. 101 241606
[17] Liu Z H, Ng G I and Arulkumaran S 2009 IEEE Electron Dev. Lett. 30 1122
[18] Gatabi I R, Johnson D W, Woo J H, Anderson J W, Coan M R, Piner E L and Harris H R 2013 IEEE Trans. Electron Dev. 60 1082
[19] Tang Z K, Huang S, Jiang Q M, Liu S H, Liu C and Chen K J 2013 IEEE Electron Dev. Lett. 34 366
[20] Liu J L, Mi M H, Zhu J J, Liu S Y, Wang P F, Zhou Y W, Zhu Q, Wu M, Lu H, Hou B, Wang H, Cai X L, Zhang Y, Duan X Y, Yang L, Ma X H and Hao Y 2021 IEEE Trans. Electron Dev. 69 631
[21] Huang T D, Malmros A, Bergsten J, Gustafsson S, Axelsson O, Thorsell M and Rorsman N 2015 IEEE Electron Dev. Lett. 36 537
[22] Kikkawa T, Iwai T and Ohki T 2008 Fujitsu Science Technology 44 333
[23] Makiyama K, Ohki T, Okamoto N, Kanamura M, Masuda S, Nakasha Y, Joshin K, Imanishi K, Hara N, Ozaki S, Nakamura N and Kikkawa T 2011 Physica Status Solidi (c) 8 2442
[24] Minko A, Hoel V, Morvan E, Grimbert B, Soltani A, Delos E, Ducatteau D, Gaquiere C, Theron D, De Jaeger J C, Lahreche H, Wedzikowski L, Langer R, Bove P and Bove P 2004 IEEE Electron Dev. Lett. 25 453
[25] Lin Y S, Lain Y W and Hsu S S H 2010 IEEE Electron Dev. Lett. 31 102
[26] Kotani J, Tajima M, Kasai S and Hashizume T 2007 Appl. Phys. Lett. 91 093501
[27] Tan W S, Uren M J, Houston P A, Green R T, Balmer R S and Martin T 2006 IEEE Electron Dev. Lett. 27 1
[28] Lin S X, Wang M J, Xie B, Wen C P, Yu M, Wang J Y, Hao Y L, Wu W G, Huang S, Chen K J and Bo S 2015 IEEE Electron Dev. Lett. 36 757
[29] Zhao Z Q, Liao D W and Du J F 2012 IEEE 11$th InternationalConference on Solid-State and Integrated Circuit Technology, October 29-November 1, 2012, Xi'an, China, p. 1
[30] Zhang N Q, Moran B, Denbaars S P, Mishra U K and Ma T P 2001 International Electron Devices Meeting. Technical Digest (Cat. No. 01CH37224), December 2-5, 2001, Washington, DC, USA, p. 5
[1] High power-added-efficiency AlGaN/GaN HEMTs fabricated by atomic level controlled etching
Xinchuang Zhang(张新创), Bin Hou(侯斌), Fuchun Jia(贾富春), Hao Lu(芦浩), Xuerui Niu(牛雪锐), Mei Wu(武玫), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(2): 027301.
[2] High linearity AlGaN/GaN HEMT with double-Vth coupling for millimeter-wave applications
Pengfei Wang(王鹏飞), Minhan Mi(宓珉瀚), Meng Zhang(张濛), Jiejie Zhu(祝杰杰), Yuwei Zhou(周雨威), Jielong Liu(刘捷龙), Sijia Liu(刘思佳), Ling Yang(杨凌), Bin Hou(侯斌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(2): 027103.
[3] Impact of oxygen in electrical properties and hot-carrier stress-induced degradation of GaN high electron mobility transistors
Lixiang Chen(陈丽香), Min Ma(马敏), Jiecheng Cao(曹杰程), Jiawei Sun(孙佳惟), Miaoling Que(阙妙玲), and Yunfei Sun(孙云飞). Chin. Phys. B, 2021, 30(10): 108502.
[4] Theoretical analytic model for RESURF AlGaN/GaN HEMTs
Hao Wu(吴浩), Bao-Xing Duan(段宝兴), Luo-Yun Yang(杨珞云), Yin-Tang Yang(杨银堂). Chin. Phys. B, 2019, 28(2): 027302.
[5] Transient simulation and analysis of current collapse due to trapping effects in AlGaN/GaN high-electron-mobility transistor
Zhou Xing-Ye (周幸叶), Feng Zhi-Hong (冯志红), Wang Yuan-Gang (王元刚), Gu Guo-Dong (顾国栋), Song Xu-Bo (宋旭波), Cai Shu-Jun (蔡树军). Chin. Phys. B, 2015, 24(4): 048503.
[6] Breakdown mechanisms in AlGaN/GaN high electron mobility transistors with different GaN channel thickness values
Ma Xiao-Hua (马晓华), Zhang Ya-Man (张亚嫚), Wang Xin-Hua (王鑫华), Yuan Ting-Ting (袁婷婷), Pang Lei (庞磊), Chen Wei-Wei (陈伟伟), Liu Xin-Yu (刘新宇). Chin. Phys. B, 2015, 24(2): 027101.
[7] Transport mechanism of reverse surface leakage current in AlGaN/GaN high-electron mobility transistor with SiN passivation
Zheng Xue-Feng (郑雪峰), Fan Shuang (范爽), Chen Yong-He (陈永和), Kang Di (康迪), Zhang Jian-Kun (张建坤), Wang Chong (王冲), Mo Jiang-Hui (默江辉), Li Liang (李亮), Ma Xiao-Hua (马晓华), Zhang Jin-Cheng (张进成), Hao Yue (郝跃). Chin. Phys. B, 2015, 24(2): 027302.
[8] Schottky forward current transport mechanisms in AlGaN/GaN HEMTs over a wide temperature range
Wu Mei (武玫), Zheng Da-Yong (郑大勇), Wang Yuan (王媛), Chen Wei-Wei (陈伟伟), Zhang Kai (张凯), Ma Xiao-Hua (马晓华), Zhang Jin-Cheng (张进成), Hao Yue (郝跃). Chin. Phys. B, 2014, 23(9): 097307.
[9] Low-leakage-current AlGaN/GaN HEMTs on Si substrates with partially Mg-doped GaN buffer layer by metal organic chemical vapor deposition
Li Ming (黎明), Wang Yong (王勇), Wong Kai-Ming (王凯明), Lau Kei-May (刘纪美). Chin. Phys. B, 2014, 23(3): 038403.
[10] Study of a millimeter-wave squint indirect holographic algorithm suitable for imaging with large field-of-view
Gao Xiang (高翔), Li Chao (李超), Fang Guang-You (方广有). Chin. Phys. B, 2014, 23(2): 028401.
[11] A novel slotted helix slow-wave structure for high power Ka-band traveling-wave tubes
Liu Lu-Wei (刘鲁伟), Wei Yan-Yu (魏彦玉), Wang Shao-Meng (王少萌), Hou Yan (侯艳), Yin Hai-Rong (殷海荣), Zhao Guo-Qing (赵国庆), Duan Zhao-Yun (段兆云), Xu Jin (徐进), Gong Yu-Bin (宫玉彬), Wang Wen-Xiang (王文祥), Yang Ming-Hua (杨明华). Chin. Phys. B, 2013, 22(10): 108401.
[12] Study on a W-band modified V-shaped microstrip meander-line traveling-wave tube
Shen Fei(沈飞), Wei Yan-Yu(魏彦玉), Xu Xiong(许雄), Yin Hai-Rong(殷海荣), Gong Yu-Bin(宫玉彬), and Wang Wen-Xiang(王文祥) . Chin. Phys. B, 2012, 21(6): 064210.
[13] Improvement of breakdown characteristics of AlGaN/GaN HEMT with U-type gate foot for millimeter-wave power application
Kong Xin (孔欣), Wei Ke (魏珂), Liu Guo-Guo (刘果果), Liu Xin-Yu (刘新宇). Chin. Phys. B, 2012, 21(12): 128501.
[14] Investigation of passivation effects in AlGaN/GaN metal–insulator–semiconductor high electron-mobility transistor by gate–drain conductance dispersion study
Bi Zhi-Wei(毕志伟), Hu Zhen-Hua(胡振华), Mao Wei(毛维), Hao Yue(郝跃), Feng Qian(冯倩), Cao Yan-Rong(曹艳荣), Gao Zhi-Yuan(高志远), Zhang Jin-Cheng(张进成), Ma Xiao-Hua(马晓华), Chang Yong-Ming(常永明), Li Zhi-Ming(李志明), and Mei Nan(梅楠). Chin. Phys. B, 2011, 20(8): 087307.
[15] The reliability of AlGaN/GaN high electron mobility transistors under step-electrical stresses
Ma Xiao-Hua(马晓华), Jiao Ying(焦颖), Ma Ping(马平), He Qiang(贺强), Ma Ji-Gang(马骥刚), Zhang Kai(张凯), Zhang Hui-Long(张会龙), Zhang Jin-Cheng(张进成), and Hao Yue(郝跃) . Chin. Phys. B, 2011, 20(12): 127305.
No Suggested Reading articles found!